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Preface

The relatively random spiking times of individual neurons produce a source of noise in the
brain. The aim of this book is to consider the effects of this and other noise on brain pro-
cessing. We show that in cortical networks this noise can be an advantage, for it leads to
probabilistic behaviour that is advantageous in decision-making, by preventing deadlock, and
is important in signal detectability. We show how computations can be performed through
stochastic dynamical effects, including the role of noise in enabling probabilistic jumping
across barriers in the energy landscape describing the flow of the dynamics in attractor net-
works. The results obtained in neurophysiological studies of decision-making and signal de-
tectability are modelled by the stochastical neurodynamics of integrate-and-fire networks of
neurons with probabilistic neuronal spiking. We describe how these stochastic neurodynami-
cal effects can be analyzed, and their importance in many aspects of brain function, including
decision-making, perception, memory recall, short-term memory, and attention. We show
how instabilities in these brain dynamics may contribute to the cognitive symptoms in aging
and in psychiatric states such as schizophrenia, and how overstability may contribute to the
symptoms in obsessive-compulsive disorder.

This is a new approach to the dynamics of neural processing, in which we show that
noise breaks deterministic computations, and has many advantages. These principles need
to be analyzed in order to understand brain function and behaviour, and it is an aim of this
book to elucidate the stochastic, that is probabilistic, dynamics of brain processing, and its
advantages. The book describes approaches that provide a foundation for this understand-
ing, including integrate-and-fire models of brain and cognitive function that incorporate the
stochastic spiking-related dynamics, and mean-field analyses that are consistent in terms of
the parameters with these, but allow formal analysis of the networks. A feature of the treat-
ment of the mean-field approach is that we introduce new ways in which it can be extended
to include some of the effects of noise on the operation of the system. The book thus de-
scribes the underpinnings in physics of this new approach to the probabilistic functioning of
the brain. However, at the same time, most of the concepts of the book and the principles of
the stochastic operation of the brain described in the book, can be understood by neurosci-
entists and others interested in brain function who do not have expertise in mathematics or
theoretical physics, and the book has been written with this in mind.

We believe that the principles of the stochastic dynamics of brain function described in
this book are important, for brain function can not be understood as a deterministic noiseless
system.

To understand how the brain works, including how it functions in memory, attention, and
decision-making, it is necessary to combine different approaches, including neural comput-
ation. Neurophysiology at the single neuron level is needed because this is the level at which
information is exchanged between the computing elements of the brain, the neurons. Evi-
dence from the effects of brain damage, including that available from neuropsychology, is
needed to help understand what different parts of the system do, and indeed what each part
is necessary for. Functional neuroimaging is useful to indicate where in the human brain
different processes take place, and to show which functions can be dissociated from each
other. Knowledge of the biophysical and synaptic properties of neurons is essential to under-
stand how the computing elements of the brain work, and therefore what the building blocks
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of biologically realistic computational models should be. Knowledge of the anatomical and
functional architecture of the cortex is needed to show what types of neuronal network ac-
tually perform the computation. The approach of neural computation is also needed, as this
is required to link together all the empirical evidence to produce an understanding of how
the system actually works. But an understanding of the role of noise in brain computation is
also crucial, as we show in this book. This book utilizes evidence from all these approaches
to develop an understanding of how different types of memory, perception, attention, and
decision-making are implemented by processing in the brain, and are influenced by the ef-
fects of noise.

We emphasize that to understand memory, perception, attention, and decision-making in
the brain, we are dealing with large-scale computational systems with interactions between
the parts, and that this understanding requires analysis at the computational and global level
of the operation of many neurons to perform together a useful function. Understanding at
the molecular level is important for helping to understand how these large-scale computa-
tional processes are implemented in the brain, but will not by itself give any account of what
computations are performed to implement these cognitive functions. Instead, understanding
cognitive functions such as memory recall, attention, and decision-making requires single
neuron data to be closely linked to computational models of how the interactions between
large numbers of neurons and many networks of neurons allow these cognitive problems to
be solved. The single neuron level is important in this approach, for the single neurons can
be thought of as the computational units of the system, and is the level at which the inform-
ation is exchanged by the spiking activity between the computational elements of the brain.
The single neuron level is therefore, because it is the level at which information is commu-
nicated between the computing elements of the brain, the fundamental level of information
processing, and the level at which the information can be read out (by recording the spiking
activity) in order to understand what information is being represented and processed in each
brain area. Moreover, the probabilistic spiking of individual neurons is an important source
of noise in the brain, and must be taken into account to understand brain function.

A test of whether one’s understanding is correct is to simulate the processing on a com-
puter, and to show whether the simulation can perform the tasks of memory systems in the
brain, and whether the simulation has similar properties to the real brain. The approach of
neural computation leads to a precise definition of how the computation is performed, and
to precise and quantitative tests of the theories produced. How memory systems in the brain
work is a paradigm example of this approach, because memory-like operations which in-
volve altered functionality as a result of synaptic modification are at the heart of how all
computations in the brain are performed. It happens that attention and decision-making can
be understood in terms of interactions between and fundamental operations of networks that
implement computations that implement memory operations in the brain, and therefore it is
natural to treat these areas of cognitive neuroscience as well as memory in this book. The
same fundamental concepts based on the operation of neuronal circuitry can be applied to all
these functions, as is shown in this book.

One of the distinctive properties of this book is that it links the neural computation ap-
proach not only firmly to neuronal neurophysiology, which provides much of the primary
data about how the brain operates, but also to psychophysical studies (for example of atten-
tion); to psychiatric studies of patients; to functional magnetic resonance imaging (fMRI)
(and other neuroimaging) approaches; and to approaches influenced by theoretical physics
about how the operation of large scale systems can be understood as a result of statistical
effects in its components, in this case the neurons. The empirical evidence that is brought to
bear is largely from non-human primates and from humans, because of the considerable sim-
ilarity of their memory and related systems, and the overall aims to understand how memory,
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attention, decision-making and related functions are implemented in the human brain, and
the disorders that can arise.

The overall aims of the book are developed further, and the plan of the book is described,
in Chapter 1, Section 1.1.

Part of the material described in the book reflects work performed in collaboration with
many colleagues, whose tremendous contributions are warmly appreciated. The contribu-
tions of many will be evident from the references cited in the text. Especial appreciation is
due to Alessandro Treves, Marco Loh, and Simon M. Stringer, who have contributed greatly
in an always interesting and fruitful research collaboration on computational aspects of brain
function, and to many neurophysiology and functional neuroimaging colleagues who have
contributed to the empirical discoveries that provide the foundation to which the computa-
tional neuroscience must always be closely linked, and whose names are cited throughout
the text. Much of the work described would not have been possible without financial support
from a number of sources, particularly the Medical Research Council of the UK, the Human
Frontier Science Program, the Wellcome Trust, and the James S. McDonnell Foundation.
The book was typeset by the Edmund Rolls using LaTex and WinEdt, and Gustavo Deco
took primary responsibility for the Appendix.

The covers show part of the picture Ulysses and the Sirens painted in 1909 by Herbert
James Draper. The version on the back cover has noise added, and might be called Ulysses
and the Noisy Sirens. The metaphors are of noise: sirens, and stormy, irregular, water; of
waves and basins of attraction: the waves on the horizon; of decision-making: the rational
conscious in Ulysses resisting the gene-based emotion-related attractors; and of Ulysses the
explorer (the Greek Odysseus of Homer), always and indefatigably (like the authors) seeking
new discoveries about the world (and how it works).

Updates to some of the publications cited in this book are available at http://www.oxcns.org.

We dedicate this work to the overlapping group: our families, friends, and many colleagues
whose contributions are greatly appreciated – in salutem praesentium, in memoriam absen-
tium. In addition, Gustavo Deco thanks and dedicates this book to his family, Maria Eugenia,
Nikolas, Sebastian, Martin, and Matthias. We remember too a close colleague and friend, the
theoretical physicist Daniel Amit, who contributed much to the analysis of attractor networks
(Amit 1989, Brunel and Amit 1997).
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5 Probabilistic decision-making

5.1 Introduction
In this Chapter, we show how an attractor network can model probabilistic decision-making.
Attractor or autoassociation memory networks that can implement short-term memory are
described in Section 1.10. For decision-making, the attractor network is trained to have
two (or more) attractor states, each one of which corresponds to one of the decisions. Each
attractor set of neurons receives a biasing input which corresponds to the evidence in favour
of that decision. When the network starts from a state of spontaneous firing, the biasing in-
puts encourage one of the attractors to gradually win the competition, but this process is
influenced by the Poisson-like firing (spiking) of the neurons, so that which attractor wins is
probabilistic. If the evidence in favour of the two decisions is equal, the network chooses each
decision probabilistically on 50% of the trials. The model not only shows how probabilistic
decision-making could be implemented in the brain, but also how the evidence can be accu-
mulated over long periods of time because of the integrating action of the attractor short-term
memory network; how this accounts for reaction times as a function of the magnitude of the
difference between the evidence for the two decisions (difficult decisions take longer); and
how Weber’s law appears to be implemented in the brain. Details of the model are provided
by Deco and Rolls (2006), and in Section 2.2.3 for the integrate-and-fire implementation, and
Sections 2.7.2 and 2.7.3 for the mean-field implementation.

It is very interesting that the model of decision-making is essentially the same as an
attractor model of long-term memory or short-term memory in which there are competing
retrieval cues. This makes the approach very unifying, and elegant, and consistent with the
presence of well-developed recurrent collateral excitatory connections in the neocortex which
with the same architecture and functionality can be put to different uses. This provides for
economy and efficiency in evolution and in the genetic prescription of a type of cortical ar-
chitecture that can be used for many functions (see further Section 8.18 on page 253).

The link between perception and action can be conceptualized by a chain of neural op-
erations, which leads a stimulus to guide behaviour to make a decision to choose a part-
icular action or motor response. For example, when subjects discriminate two stimuli sep-
arated by a time interval, the chain of neural operations encompasses mechanisms from
the encoding of sensory stimuli, the attentional filtering of relevant features, their main-
tenance in working memory, to the comparison leading to a motor response (Romo and
Salinas 2001, Romo and Salinas 2003). The comparison step is a crucial operation in the
decision-making process. A number of neurophysiological experiments on decision-making
are providing information on the neural mechanisms underlying perceptual comparison, by
analyzing the responses of neurons that correlate with the animal’s behaviour (Werner and
Mountcastle 1965, Talbot, Darian-Smith, Kornhuber and Mountcastle 1968, Salzman, Britten
and Newsome 1990, Kim and Shadlen 1999, Gold and Shadlen 2000, Schall 2001, Hernan-
dez, Zainos and Romo 2002, Romo, Hernandez, Zainos, Lemus and Brody 2002, Romo, Her-
nandez, Zainos and Salinas 2003, Glimcher 2003, Glimcher 2004, Romo et al. 2004, Smith
and Ratcliff 2004, Sugrue, Corrado and Newsome 2005, Gold and Shadlen 2007). An impor-
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tant finding is that cortical areas involved in generating motor responses also show activity
reflecting a gradual accumulation of evidence for choosing one or another decision, such that
the process of making a decision and action generation often can not be differentiated (see
for example, Gold and Shadlen (2000) and Romo, Hernandez and Zainos (2004); but see
also Section 8.12, where it is argued that different types of categorical choice take place in
different cortical areas).

Complementary theoretical neuroscience models are approaching the problem by design-
ing biologically realistic neural circuits that can perform the comparison of two signals (Wang
2002, Brody, Romo and Kepecs 2003b, Machens, Romo and Brody 2005, Wang 2008). These
models involve two populations of excitatory neurons, engaged in competitive interactions
mediated by inhibition, and external sensory inputs that bias this competition in favor of one
of the populations, producing a binary choice that develops gradually. Consistent with the
neurophysiological findings, this neurodynamical picture integrates both the accumulation of
perceptual evidence for the comparison, and choice, in one unifying network. Even more, the
models are able to account for the experimentally measured psychometric and neurometric
curves, and reaction times (Marti et al. 2008).

The comparison of two stimuli for which is the more intense becomes more difficult as
they become more similar. The ‘difference-threshold’ or ‘just-noticeable difference’ (jnd)
is the amount of change needed for us to recognize that a change has occurred. Weber’s
law (enunciated by Ernst Heinrich Weber 1795–1878) states that the ratio of the difference-
threshold to the background intensity is a constant. Most theoretical models of decision-
making (Wang 2002, Brody et al. 2003b, Machens et al. 2005) have not investigated Weber’s
law, and therefore a thorough understanding of the neural substrate underlying the compari-
son process has been missing until recently (Deco and Rolls 2006).

In this Chapter, the neurodynamical mechanisms engaged in the process of comparison
in a decision-making paradigm is investigated, and these processes are related to the psy-
chophysics, as described for example by Weber’s law. That is, the probabilistic behaviour of
the neural responses responsible for detecting a just noticeable stimulus difference is part of
what is described.

5.2 Decision-making in an attractor network
Let us consider the attractor network architecture again, but this time as shown in Fig. 5.1a
with two competing inputs λ1 and λ2, each encouraging the network to move from a state
of spontaneous activity into the attractor corresponding to λ1 or to λ2. These are separate
attractor states that have been set up by associative synaptic modification, one attractor for
the neurons that are coactive when λ1 is applied, and a second attractor for the neurons that are
coactive when λ2 is applied. When λ1 and λ2 are both applied simultaneously, each attractor
competes through the inhibitory interneurons (not shown), until one wins the competition,
and the network falls into one of the high firing rate attractors that represents the decision.
The noise in the network caused by the random spiking of the neurons means that on some
trials, for given inputs, the neurons in the decision 1 attractor are more likely to win, and
on other trials the neurons in the decision 2 attractor are more likely to win. This makes
the decision-making probabilistic, for, as shown in Fig. 5.1b, the noise influences when the
system will jump out of the spontaneous firing stable (low energy) state S, and whether it
jumps into the high firing state for decision 1 or decision 2 (D).

The operation and properties of this model of decision-making (Wang 2002, Deco and
Rolls 2006) are described first in this Chapter (5), and then in Section 5.8 we build on what
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Fig. 5.1 (a) Attractor or autoassociation network architecture for decision-making. The evidence for deci-
sion 1 is applied via the λ1 inputs, and for decision 2 via the λ2 inputs. The synaptic weights wij have
been associatively modified during training in the presence of λ1 and at a different time of λ2. When λ1

and λ2 are applied, each attractor competes through the inhibitory interneurons (not shown), until one
wins the competition, and the network falls into one of the high firing rate attractors that represents the
decision. The noise in the network caused by the random spiking of the neurons means that on some
trials, for given inputs, the neurons in the decision 1 attractor are more likely to win, and on other trials the
neurons in the decision 2 attractor are more likely to win. This makes the decision-making probabilistic,
for, as shown in (b), the noise influences when the system will jump out of the spontaneous firing stable
(low energy) state S, and whether it jumps into the high firing state for decision 1 or decision 2 (D).

has been described, and introduce the different stable states of this type of model, and the
effects of noise in such a system.

5.3 The neuronal data underlying a vibrotactile
discrimination task

A good paradigm for studying the mechanisms of decision-making is the vibrotactile se-
quential discrimination task, because evidence on the neuronal basis is available. In the two-
alternative, forced-choice task used, subjects must decide which of two mechanical vibrations
applied sequentially to their fingertips has the higher frequency of vibration (see Fig. 7.1 on
page 214). Neuronal recording and behavioural analyses (Romo and Salinas 2003) have pro-
vided sufficient detail about the neuronal bases of these decisions for a quantitative model to
be developed. In particular, single neuron recordings in the ventral premotor cortex (VPC) re-
veal neurons whose firing rate was dependent only on the difference between the two applied
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frequencies, the sign of that difference being the determining factor for correct task perfor-
mance (Romo, Hernandez and Zainos 2004, de Lafuente and Romo 2005). We consider other
potential applications of this approach to decision-making in Chapter 8.

Deco and Rolls (2006) modelled the activity of these VPC neurons by means of a theor-
etical framework first proposed by Wang (2002), but investigated the role of finite-size fluc-
tuations in the probabilistic behaviour of the decision-making neurodynamics, and espe-
cially the neural encoding of Weber’s law. (The finite size fluctuations are the statistical ef-
fects caused by the chance firing of different numbers of spiking neurons in a short time
period, which are significant in networks of less that infinite size, and which can influ-
ence the way in which a network operates or settles, as described further below.) The neu-
rodynamical formulation is based on the principle of biased competition/cooperation that
has been able to simulate and explain, in a unifying framework, attention, working mem-
ory, and reward processing in a variety of tasks and at different cognitive neuroscience ex-
perimental measurement levels (Rolls and Deco 2002, Deco and Lee 2002, Corchs and
Deco 2002, Deco, Pollatos and Zihl 2002, Corchs and Deco 2004, Deco and Rolls 2002, Deco
and Rolls 2003, Deco and Rolls 2004, Deco, Rolls and Horwitz 2004, Szabo, Almeida, Deco
and Stetter 2004, Deco and Rolls 2005b, Deco and Rolls 2005a, Rolls and Deco 2006, Rolls,
Loh, Deco and Winterer 2008b, Rolls, Grabenhorst and Deco 2010b).

The neuronal substrate of the ability to discriminate two sequential vibrotactile stimuli has
been investigated by Romo and colleagues (Romo and Salinas 2001, Hernandez, Zainos and
Romo 2002, Romo, Hernandez, Zainos, Lemus and Brody 2002, Romo, Hernandez, Zainos
and Salinas 2003, Romo and Salinas 2003, Romo, Hernandez and Zainos 2004, de Lafuente
and Romo 2005). They used a task where trained macaques (Macaca mulatta) must decide
and report which of two mechanical vibrations applied sequentially to their fingertips has
the higher frequency of vibration by pressing one of two pushbuttons. This decision-making
paradigm requires therefore the following processes: (1) the perception of the first stimulus, a
500 ms long vibration at frequency f1; (2) the storing of a trace of the f1 stimulus in short-term
memory during a delay of typically 3 s; (3) the perception of the second stimulus, a 500 ms
long vibration at frequency f2; and (4) the comparison of the second stimulus f2 to the trace
of f1, and choosing a motor act based on this comparison (f2-f1). The vibrotactile stimuli f1
and f2 utilized were in the range of frequencies called flutter, i.e. within approximately 5–50
Hz.

Deco and Rolls (2006) were particularly interested in modelling the responses of ven-
tral premotor cortex (VPC) neurons (Romo, Hernandez and Zainos 2004). The activity of
VPC neurons reflects the current and the remembered sensory stimuli, their comparison, and
the motor response, i.e the entire cascade of decision-making processing linking the sensory
evaluation to the motor response. Many VPC neurons encode f1 during both the stimulus
presentation and the delay period. During the comparison period, the averaged firing rate of
VPC neurons after a latency of a few hundred milliseconds reflects the result of the compar-
ison, i.e. the sign of (f2-f1), and correlates with the behavioural response of the monkey. In
particular, we are interested in VPC neurons which show the strongest response only during
the comparison period and reflect the sign of the comparison f2-f1, i.e. these neurons are only
activated during the presentation of f2, with some responding to the condition f1<f2, and
others to the condition f1>f2. These neurons, which are shown in figure 2(G, H, I) of Romo,
Hernandez and Zainos (2004) (see example in Fig. 5.2), reflect the decision-making step of
the comparison, and therefore we will describe here their probabilistic dynamical behaviour
as reported by the experimental work; and through theoretical analyses we will relate their
behaviour to how decisions are taken in the brain, and to Weber’s law.

Earlier brain areas provide inputs useful to the VPC. In the primary somatosensory area
S1 the average firing rates of neurons in S1 convey information about the vibrotactile freq-
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Fig. 5.2 A neuron in the ventral premotor cortex that responded to a vibrotactile stimulus during the f1
stimulation and during the delay period. However, the strongest response was for condition f2 > f1 during
the f2 period. In the raster plot, each row of ticks is a trial, and each tick is an action potential. Trials
were delivered in random order with 5 trials per stimulus pair shown. The labels on the left show the f1, f2
stimulus pairs for each set of 5 trials illustrated. At KU (key up) the monkey releases the key and presses
either a lateral or a medial push button (PB) to indicate whether the comparison frequency (f2) was higher
or lower than the base frequency (f1). (After Romo, Hernandez and Zainos 2004.)

uency f1 or f2 during the stimulation period. (The neuronal responses stop reflecting inform-
ation about the stimuli immediately after the end of the stimulus.) The firing rates increase
monotonically with stimulus frequency (Romo and Salinas 2003). Neurons in the secondary
somatosensory area S2 respond to f1 and show significant delay activity for a few hundred
milliseconds after the end of the f1 stimulus (Romo et al. 2002). Some neurons have posi-
tive and others negative monotonic relationships between their firing rate and the vibrotactile
stimulus frequency. During the initial part of f2 (ca. 200 ms) the firing rate reflects either f1
or f2; later, during the last 300 ms, the firing rate reflects the comparison (f2-f1), and there-
fore the result of the decision. Prefrontal cortex (PFC) neurons (Brody et al. 2003a) also have
a positive or negative monotonic firing rate relationship with f1. Furthermore, PFC neurons
convey information about f1 into the delay period, with some neurons carrying it only during
the early part of the delay period (early neurons), others only during the late part of the delay
period (late neurons), and others persistently throughout the entire delay period (persistent
neurons). During the presentation of the second stimulus f2, PFC neurons also respond like
S2 neurons. Some PFC neurons respond as a function of f2 during the initial part of the com-
parison period, whereas other neurons show a firing rate dependency only on f1 before and at
the onset of the second stimulus. In the latter part of the comparison, the firing rate reflects the
comparison f2-f1. Medial premotor cortex (MPC) neurons respond similarly to PFC neurons,
i.e. MPC neurons respond during f1 itself, with either positive or negative monotonic firing
rate relationships, during the late part of the delay period in an f1-dependent manner in the
same way as the late PFC neurons, and during the comparison period reflecting the compari-
son f2-f1 (Hernandez et al. 2002).

In summary, in the sequential vibrotactile discrimination task, S1 is predominantly sen-
sory and the primary motor cortex (M1) is predominantly motor. A number of other cortical
areas have activity that reflects the encoding, short-term memory, and comparison functions
involved, perhaps as a result of information exchange between these cortical areas: the dif-
ferences between S2, MPC and VPC are reflected mainly in their different latencies. In a
detection task, the activity of S1 neurons codes for the stimulus but not for the behavioural
choice made, whereas neuronal activity in MPC correlates with behavioural choice and de-
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tection (de Lafuente and Romo 2005). Within this context, VPC (and MPC) neurons seem
to reflect the core of the processing that links sensory information with action, and therefore
they may represent the decision-making process itself, rather than the representation of the
stimulus. Consequently VPC neurons are excellent candidates for encoding also the proba-
bilistic behavioural response as expressed in Weber’s law.

Key questions are how ventral premotor cortex (VPC) neurons (or neurons with similar
activity in connected areas such as MPC) implement the decision-making process. What are
the principles by which the probabilistic decisions are taken? How is the processing implem-
ented by the neurons?

5.4 Theoretical framework: a probabilistic attractor
network

The theoretical framework within which the new model was developed was utilized by Wang
(2002), which is based on a neurodynamical model first introduced by Brunel and Wang
(2001), and which has been recently extended and successfully applied to explain several
experimental paradigms (Rolls and Deco 2002, Deco and Rolls 2002, Deco and Rolls 2003,
Deco and Rolls 2004, Deco, Rolls and Horwitz 2004, Szabo, Almeida, Deco and Stetter
2004, Deco and Rolls 2005b, Rolls, Grabenhorst and Deco 2010b, Rolls, Grabenhorst and
Deco 2010c). In this framework, we model probabilistic decision-making by a single attractor
network of interacting neurons organized into a discrete set of populations, as depicted in Fig.
5.3. Populations or pools of neurons are defined as groups of excitatory or inhibitory neurons
sharing the same inputs and connectivities. The network contains NE (excitatory) pyramidal
cells and NI inhibitory interneurons. In the simulations, we used NE = 800 and NI = 200,
consistent with the neurophysiologically observed proportion of 80% pyramidal cells versus
20% interneurons (Abeles 1991, Rolls and Deco 2002). The neurons are fully connected (with
synaptic strengths as specified later).

The specific populations have specific functions in the task. In our minimal model, we
assumed that the specific populations encode the categorical result of the comparison between
the two sequentially applied vibrotactile stimulation, f1 and f2, i.e. the result that f1>f2 or the
result that f1<f2. Each specific population of excitatory cells contains rNE neurons (in our
simulations r = 0.1). In addition there is one non-specific population, named ‘Non-specific’,
which groups all other excitatory neurons in the modelled brain area not involved in the
present task, and one inhibitory population, named ‘Inhibitory’, grouping the local inhibitory
neurons in the modelled brain area. The latter population regulates the overall activity and
implements competition in the network by spreading a global inhibition signal.

Because we were mainly interested in the non-stationary probabilistic behaviour of the
network, the proper level of description at the microscopic level is captured by the spiking and
synaptic dynamics of one-compartment Integrate-and-Fire (IF) neuron models (see Section
2.2). At this level of detail the model allows the use of realistic biophysical time constants,
latencies and conductances to model the synaptic current, which in turn allows a thorough
study of the realistic time scales and firing rates involved in the time evolution of the neural
activity. Consequently, the simulated neuronal dynamics, that putatively underly cognitive
processes, can be quantitatively compared with experimental data. For this reason, it is very
useful to include a thorough description of the different time constants of the synaptic act-
ivity. The IF neurons are modelled as having three types of receptor mediating the synaptic
currents flowing into them: AMPA, NMDA (both activated by glutamate), and GABA recep-
tors. The excitatory recurrent postsynaptic currents (EPSCs) are considered to be mediated
by AMPA (fast) and NMDA (slow) receptors; external EPSCs imposed onto the network
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Fig. 5.3 The architecture of the neurodynamical model for a probabilistic decision-making network. The
single attractor network has two populations or pools of neurons (f1>f2) and (f1<f2) which represent the
decision states. One of these pools becomes active when a decision is made. If pool (f1>f2) is active,
this corresponds to the decision that stimulus f1 is greater than stimulus f2. There is also a population
of non-specific excitatory neurons, and a population of inhibitory neurons. Pool (f1>f2) is biased by λ1

which reflects the strength of stimulus f1, and pool (f2>f1) is biased by λ2 which reflects the strength of
stimulus f2. (In the simulations performed f1 is the frequency of vibrotactile stimulus 1, f2 is the frequency
of vibrotactile stimulus 2, and the stimuli must be compared to decide which is the higher frequency.)
The integrate and fire network is subject to finite size noise, and therefore probabilistically settles into
either an attractor with the population (f1>f2) active, or with the population (f1<f2) active, depending on
the biasing inputs λ1 and λ2. The network is thus a biased competition model of decision-making. The
weights connecting the different populations of neurons are shown as w+, w−, wI, and 1, and the values
found in the mean field analysis are given in the text. All neurons receive a small random Poisson set of
input spikes λext from other neurons in the system. The nonspecific excitatory neurons are connected to
pool (f1>f2) as well as to pool (f1<f2). (After Deco and Rolls 2006.)

from outside are modelled as being driven only by AMPA receptors. Inhibitory postsynaptic
currents (IPSCs) to both excitatory and inhibitory neurons are mediated by GABA receptors.
The details of the mathematical formulation are summarized in previous publications (Brunel
and Wang 2001, Deco and Rolls 2005b, Deco and Rolls 2006), and are provided in Section
2.2.3.

We modified the conductance values for the synapses between pairs of neurons by synap-
tic connection weights, which can deviate from their default value 1. The structure and funct-
ion of the network was achieved by differentially setting the weights within and between
populations of neurons. The labelling of the weights is defined in Fig. 5.3. We assumed that
the connections are already formed, by for example earlier self-organization mechanisms, as
if they were established by Hebbian learning, i.e. the coupling will be strong if the pair of
neurons have correlated activity (i.e. covarying firing rates), and weak if they are activated in
an uncorrelated way. We assumed that the two decisions ‘f1>f2’ and ‘f1<f2’, corresponding
to the two categories, are already encoded, in the sense that the monkey is already trained
that pushing one or the other button, but not both, might produce a reward. As a consequence
of this, neurons within a specific excitatory population are mutually coupled with a strong
weight w+, and each such population thus forms an attractor. Furthermore, the populations
encoding these two decisions are likely to have anti-correlated activity in this behavioural
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context, resulting in weaker than average connections between the two different populations.
Consequently, we choose a weaker value w− = 1 − r(w+ − 1)/(1 − r), so that the over-
all recurrent excitatory synaptic drive in the spontaneous state remains constant as w+ is
varied (Brunel and Wang 2001). Neurons in the inhibitory population are mutually connected
with an intermediate weight w = 1. They are also connected with all excitatory neurons in the
same layer with the same intermediate weight, which for excitatory-to-inhibitory connections
is w = 1, and for inhibitory-to-excitatory connections is denoted by a weight wI. Neurons in
a specific excitatory population are connected to neurons in the non-selective population in
the same layer with a feedforward synaptic weight w = 1 and a feedback synaptic connection
of weight w−.

Each individual population is driven by two different kinds of input. First, all neurons in
the model network receive spontaneous background activity from outside the module through
Next=800 external excitatory connections. Each connection carries a Poisson spike train at a
spontaneous rate of 3 Hz, which is a typical spontaneous firing rate value observed in the
cerebral cortex. This results in a background external input with a rate summed across all
800 external synapses onto each neuron of 2.4 kHz for each neuron. Second, the neurons in
the two specific populations additionally receive external inputs encoding stimulus-specific
information. They are assumed to originate from the somatosensory area S2 and from the
PFC, encoding the frequency of both stimuli f1 (stored) and f2 (present) to be compared
during the comparison period, i.e. when the second stimulus is applied. (Stimuli f1 and f2
influence λ1 and λ2 as shown in Fig. 5.3. The way in which the different S2 and PFC neurons
described by Romo et al. (2004) are combined linearly to produce λ1 and λ2 is described by
Deco and Rolls (2006).) These inputs which convey the evidence for each of the decisions are
added to the background external inputs being applied via the 800 synapses to each neuron.

In summary, f1 is the frequency of vibrotactile stimulus 1, f2 is the frequency of vibro-
tactile stimulus 2, and the stimuli must be compared to decide which is the higher frequency.
The single attractor network has two populations or pools of neurons (f1>f2) and (f1<f2)
which represent the decision states (see Fig. 5.3). One of these pools becomes active when
a decision is made. If pool (f1>f2) is active, this corresponds to the decision that stimulus
f1 is greater than stimulus f2. Pool (f1>f2) is biased by λ1 which reflects the frequency of
stimulus f1, and pool (f2>f1) is biased by λ2 which reflects the frequency of stimulus f2. The
integrate and fire network is subject to finite size noise, and therefore probabilistically settles
into an attractor either with the population (f1>f2) active, or with the population (f1<f2)
active, depending on the biasing inputs λ1 and λ2. The network is thus a biased competition
model of decision-making. All neurons receive a small random Poisson set of input spikes
λext via their 800 synapses that receive external inputs.

5.5 Stationary multistability analysis: mean-field
A first requirement for using the network described earlier as a probabilistic decision-making
neurodynamical framework is to tune its connectivity such that the network operates in a
regime of multistability. This means that at least for the stationary conditions, i.e. for periods
after the dynamical transients, different possible attractors are stable. The attractors of interest
for our task correspond to high activity (high spiking rates) or low activity (low spiking
rates) of the neurons in the specific populations (f1>f2) and (f1<f2). The activation of the
specific population (f1>f2) and the simultaneous lack of activation of the specific population
(f1<f2) corresponds to encoding associated with a motor response of the monkey reporting
the categorical decision f1>f2. The opposite decision corresponds to the opposite attractor
states in the two specific neuronal populations. Low activity in both specific populations (the
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‘spontaneous state’) corresponds to encoding that no decision has been made, i.e. the monkey
does not answer or generates a random motor response. The same happens if both specific
populations are activated (the ‘pair state’). Because the monkey responds in a probabilistic
way depending on the different stimuli, the operating working point of the network should be
such that both possible categorical decisions, i.e. both possible single states, and sometimes
(depending on the stimuli) the pair and spontaneous states, are possible stable states.

The network’s operating regimes just described can all occur if the synaptic connection
weights are appropriate. To determine the correct weights a mean field analysis was used
(Deco and Rolls 2006) as described in Section 2.7.2 on page 85. Although a network of
integrate-and-fire neurons with randomness in the spikes being received is necessary to un-
derstand the dynamics of the network, and how these are related to probabilistic decision-
making, this means that the spiking activities fluctuate from time-point to time-point and
from trial to trial. Consequently, integrate-and-fire simulations are computationally expen-
sive and their results probabilistic, which makes them rather unsuitable for systematic pa-
rameter explorations. To solve this problem, we simplified the dynamics via the mean-field
approach at least for the stationary conditions, i.e. for periods after the dynamical transients,
and then analyzed the bifurcation diagrams of the dynamics. The essence of the mean-field
approximation is to simplify the integrate-and-fire equations by replacing after the diffusion
approximation (Tuckwell 1988, Amit and Brunel 1997, Brunel and Wang 2001), the sums
of the synaptic components by the average D.C. component and a fluctuation term. The sta-
tionary dynamics of each population can be described by the population transfer function,
which provides the average population rate as a function of the average input current. The set
of stationary, self-reproducing rates νi for the different populations i in the network can be
found by solving a set of coupled self-consistency equations using the formulation derived
by Brunel and Wang (2001) (see Section 2.7.2). The equations governing the activities in the
mean-field approximation can hence be studied by standard methods of dynamical systems.
The formulation departs from the equations describing the dynamics of one neuron to reach
a stochastic analysis of the mean-first passage time of the membrane potentials, which re-
sults in a description of the population spiking rates as functions of the model parameters,
in the limit of very large N . Obtaining a mean-field analysis of the stationary states that is
consistent with the network when operating dynamically as an integrate-and-fire network is
an important part of the approach used by Deco and Rolls (see Sections 2.6 and 2.7).

To investigate how the stable states depend on the connection parameters w+ and wI,
Deco and Rolls (2006) solved the mean-field equations for particular values of these parame-
ters starting at different initial conditions. For example, to investigate the stability of the state
described by population (f1>f2) being in an active state and all other populations inactive,
we initialize the system with that population at 10 Hz, all other excitatory populations (in-
cluding the non-specific ones) at 3 Hz, and the inhibitory population at 9 Hz. If and only if,
after solving the equations numerically1, the population (f1>f2) is still active (meaning that
they have a firing rate ≥10 Hz) but no other excitatory population is active, we conclude that
the state is stable. This procedure is then repeated for all other combinations of w+ and wI to
find the region where the active population (f1>f2) is stable. The stable regions of the other
states are found in the same way.

Figure 5.4 presents the bifurcation diagrams resulting from the mean-field analysis, for a
particular case where the behavioural decision-making is hardest and is in fact purely random
(i.e. at chance) as f1 and f2 are equal. Figure 5.4 shows how the stable states of average firing
vary as a function of the strength of w+ and wI for the case: f1=f2=17.5 Hz corresponding to a

1For all simulation periods studied, the mean-field equations were integrated using the Euler method with step
size 0.1 and 4000 iterations, which always allowed for convergence.
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Fig. 5.4 Mean-field analysis to determine suitable values of the synaptic weights for the decision-making
network. The bifurcation diagram is for the particular case where the behavioural decision-making is at
chance due to f1 and f2 being equal. The diagram shows how the stable states of the average firing rate
vary as a function of the synaptic strengths w+ and wI for the case: f1=f2=17.5 Hz corresponding to
a low frequency of vibrotactile stimulation. The different regions where single states, a pair state, and a
spontaneous firing rate state are stable are shown. In the following simulations we focus on the region
of multistability (i.e. where either one or the other pool of neurons wins the competition, but where the
spontaneous firing state is also a stable state), so that a probabilistic decision is possible, and therefore
a convenient working point is one corresponding to a connectivity given by w+=2.2 and wI=1.015. (After
Deco and Rolls 2006.)

low frequency of vibrotactile stimulation. In these cases, the specific populations (f1>f2) and
(f1<f2) received an extra stimulation of λ1 and λ2, respectively, encoding the two vibrotactile
stimuli to be compared. (The way in which these λ values were calculated simply reflects the
neurons recorded in the VPC and connected areas, as described by Deco and Rolls (2006).)
The different regions where single states, a pair state, and a spontaneous state are stable are
shown. In the simulations, Deco and Rolls (2006) focused on a region of multistability, in
which both the possible decision states, and the spontaneous firing state, were stable (see
further Section 5.8), so that a probabilistic decision is possible, and therefore a convenient
working point (see Fig. 5.4) is one corresponding to a connectivity given by w+ = 2.2 and
wI = 1.015.

Overall, Fig. 5.4 shows very large regions of stability, so that the network behaviour
described here is very robust.
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5.6 Non-stationary probabilistic analysis: spiking
dynamics

5.6.1 Integrate-and-fire simulations of decision-making
A full characterization of the dynamics, and especially of its probabilistic behaviour, includ-
ing the non-stationary regime of the system, can only be obtained through computer simula-
tions of the spiking network model. Moreover, these simulations enable comparisons between
the model in which spikes occur and neurophysiological data. The simulations of the spiking
dynamics of the network were integrated numerically using the second order Runge–Kutta
method with a step size 0.05 ms. Each simulation was started by a period of 500 ms where
no stimulus was presented, to allow the network to stabilize. The non-stationary evolution of
spiking activity was averaged over 200 trials initialized with different random seeds. In all
cases, Deco and Rolls (2006) aimed to model the behaviour of the VPC neurons as shown
in Fig. 5.2 from Romo, Hernandez and Zainos (2004) which reflect the decision-making
performed during the comparison period. Therefore, Deco and Rolls (2006) studied the non-
stationary probabilistic behaviour of the spiking network defined in Fig. 5.3, during this com-
parison period (during the presentation of f2), by stimulating the network simultaneously
with f1 and f2. This was done by increasing the rate of the Poisson train to the neurons of
both specific populations (f1>f2) and (f1<f2) by an extra value of λ1 and λ2, respectively,
as these encode the two vibrotactile stimuli to be compared.

5.6.2 Decision-making on a single trial
Figure 5.5 shows for a single trial a typical time course of the network of VPC neurons dur-
ing the decision period when the two stimuli are being compared for the case of f1=35 Hz
and f2=25 Hz. The top part of Fig. 5.5 plots the time course of the mean firing rate of the
populations (f1>f2), (f1<f2), and the inhibitory population. The bin widths used for the sim-
ulations were 20 ms. The transition shown corresponds to a correct trial, i.e. a transition to
the correct final attractor encoding the result of the discrimination f1>f2. We observe that
after 200 ms the populations (f1>f2) and (f1<f2) start to separate in such a way that the pop-
ulation (f1>f2) wins the competition and the network performs a transition to a single-state
final attractor corresponding to a correct discrimination (i.e. high activity in the population
(f1>f2) and low activity in the population (f1<f2)). The bottom part of Fig. 5.5 plots the
corresponding rastergrams of 10 randomly selected neurons for each pool in the network.
Each vertical line corresponds to the generation of a spike. The spiking activity shows how
the firing makes the transition to the correct final single-state attractor. Further examples of
the neuronal decision-making process on individual trials are shown in Figs. 5.6 and 6.2.

Romo et al. (2004) analysed the responses of VPC neurons performing the comparison
as a function of both f1 and f2 (and showed the neurophysiological findings in their Figure
2G,H,I, see Fig. 5.2). Figure 5.6 shows the simulation results that correspond to those cases.
Figure 5.6A shows rastergrams of a single neuron of the population (f1<f2) during the deci-
sion period starting when the f1 and f2 stimuli are applied at time = 0 ms. (The neuron should
thus fire at a high rate only on trials when f2 is greater than f1, and data are shown only for
correct trials.) The labels on the left indicate the vibrotactile frequencies of the f1, f2 stimulus
pairs between which a decision was being made. Each row of ticks is a trial (with 10 trials
of the single neuron shown for each case), and each tick is a spike. All neurons were tested
with 10 trials per stimulus pair, selecting only trials where the network performed correctly.
The top 5 cases correspond to a situation where f1<f2 and therefore the population (f1<f2) is
highly activated after 100–200 ms. The lower 5 cases correspond to a situation where f1>f2
and therefore the population (f1<f2) is not activated. (The population (f1>f2), not shown in



Probabilistic decision-making150 |

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

Time (ms)

R
a

te
 

(H
z
) 

Inhibitory

Pool (f1>f2)

Pool (f1<f2)

Rate Activity  (f2=25 Hz and f1-f2=10 Hz)

0 50 100 150 200 250 300 350 400 450 500

Inh

Pool (f1>f2)

2

Pool (f1<f2)

2

NS

Spiking Activity  (f2=25 Hz and f1-f2=10 Hz)

Time (ms)

N
e

u
ro

n
s

10

40

30

20

0

Fig. 5.5 The time course of a decision. The activity of the simulated ventral premotor cortex (VPC) neur-
ons is shown during the decision period for the case of f1=35 Hz and f2=25 Hz. The stimuli were applied
continuously starting at time = 0 ms. The top part plots the time course of the average spiking rate of
the populations (f1>f2), (f1<f2), and the inhibitory population. The bin widths used for the simulations
were 20 ms. The bottom part plots the corresponding rastergrams of 10 randomly selected neurons for
each pool in the network. Each vertical line corresponds to the generation of a spike. In the rastergram,
NS refers to neurons in the non-specific population, and Inh to neurons in the inhibitory population. The
spiking activity shows the transition to the correct final single-state attractor, i.e. a transition to the correct
final attractor encoding the result of the discrimination (f1>f2) (see text). (After Deco and Rolls 2006.)

Fig. 5.6, won the competition in the lower 5 cases shown in Fig. 5.6A, and therefore inhibited
the (f1<f2) population in the correctly discriminated trials selected for this Figure.) Figure
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Fig. 5.6 Responses of a single neuron of the population (f1<f2) during the decision period between f1
and f2. The simulations corresponds to the experimental cases measured and studied by Romo et al.
(2004) (see figure 2G,H,I of that paper, and Fig. 5.2). The different stimulation cases labelled on the left
indicate f1, f2 pairs of the vibrotactile stimulation frequencies. (a) Rastergrams. Each row of ticks is a trial,
and each tick is a spike. Ten correct trials are shown for each stimulus pair case. (b) Evolution of fitting
coefficients a1(t) and a2(t) of the firing rates (see text) during the decision period. Both coefficients
evolve in an antisymmetrical fashion, indicating that the average firing rate r(t) is dependent primarily
on the sign of the difference between f1 and f2 (i.e. a1(t) = −a2(t)), and not on the magnitude of the
difference. (After Deco and Rolls 2006.)

5.6A shows that the firing rate at the end of the simulation period shown, at 250 ms, is high
only when f2 is greater than f1, and that the final firing rate on these correct trials is relatively
independent of the exact values of f1 and f2 (including the difference between f2 and f1), and
responds just depending on the sign of the difference between f2 and f1, reaching a high rate
only when f2 is greater than f1.

To analyse more quantitatively the dependence of the average firing rate of the VPC neur-
ons encoding the comparisons as a function of f1 and f2, Romo et al. (2004) fitted and plotted
the time evolution of the coefficients that directly measure the dependence on f1 and f2. Let us
denote by r(t) the trial averaged firing rate of the population (f1<f2) at time t. We determined
the coefficients a1(t), a2(t) and a3(t) that fit the firing rate of the population (f1<f2) accord-
ing to r(t) = a1(t)f1 + a2(t)f2 + a3(t). We considered for all 10 f1,f2 pair cases shown in
Fig. 5.6A, 50 correct trials, using a bin width of 50 ms. Figure 5.6B plots the timecourse of
a1(t) and a2(t) during the comparison period. In this Figure, both coefficients evolve in an
antisymmetrical fashion, indicating that the average firing rate r(t) depends primarily on the
difference between f1 and f2 (i.e. a1(t) = −a2(t)) (see further Chapter 6). Even more, in the
range of vibrotactile flutter frequencies, the simulation and neurophysiological results show
that the final firing rate depends significantly primarily on the sign of the difference and not
on the magnitudes of the vibrotactile frequency values.

5.6.3 The probabilistic nature of the decision-making

The decision-making implemented by this attractor model is probabilistic. We now investi-
gate this systematically.
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Fig. 5.7 Probability of correct discrimination (± sd) as a function of the difference between the two pre-
sented vibrotactile frequencies to be compared. In the simulations, we assume that f1>f2 by a ∆-value
(labelled ‘Delta frequency (f1-f2)’ ), i.e. f1=f2+∆. The points correspond to the trial averaged spiking sim-
ulations. The line interpolates the points with a logarithmic function. The horizontal dashed line represents
the threshold of correct classification for a performance of 85% correct discrimination. The second panel
down includes actual neuronal data (indicated by *) described by Romo and Salinas (2003) for the f2=20
Hz condition. (After Deco and Rolls 2006.)

Figure 5.7 shows the probability of correct discrimination as a function of the difference
between the two presented vibrotactile frequencies to be compared. We assume that f1>f2
by a ∆-value, i.e. f1=f2+∆. (In Fig. 5.7 this value is called ‘Delta frequency (f1-f2)’.) Each
diamond-point in the Figure corresponds to the result calculated by averaging 200 trials of
the full spiking simulations. The lines were calculated by fitting the points with a logarithmic
function. A correct classification occurs when during the 500 ms comparison period, the
network evolves to a ‘single-state’ attractor that shows a high level of spiking activity (larger
than 10 Hz) for the population (f1>f2), and simultaneously a low level of spiking activity
for the population (f1<f2) (at the level of the spontaneous activity). Figure 5.7 shows that the
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Fig. 5.8 Weber’s law for the vibrotactile discrimination task. The critical discrimination ∆-value (‘differ-
ence-threshold’) is shown corresponding to an 85% correct performance level as a function of the base
frequency f2. The ‘difference-threshold’ increases linearly as a function of the base frequency. (After Deco
and Rolls 2006.)

decision-making is probabilistic, and that the probability of a correct discrimination increases
as ∆f, the difference between the two stimuli being compared, increases. When ∆f is 0, the
network performs at chance, and its choices are 50% correct. The second panel of Fig. 5.7
shows a good fit between the actual neuronal data described by Romo and Salinas (2003) for
the f2=20 Hz condition (indicated by *), and the results obtained with the model (Deco and
Rolls 2006).

One can observe from the different panels in Fig. 5.7 corresponding to different base
vibrotactile frequencies f2, that to reach a threshold of correct classification of for example
85% correct (horizontal dashed line in Fig. 5.7), the difference between f1 and f2 must be-
come larger as the base frequency f2 increases.

5.6.4 Probabilistic decision-making and Weber’s law
Figure 5.8 plots the critical discrimination ∆-value corresponding to an 85% correct perfor-
mance level (the ‘difference threshold’) as a function of the base frequency f2. The ‘difference
threshold’ increases linearly as a function of the base frequency, that is, ∆f/f is a constant.
This corresponds to Weber’s law for the vibrotactile discrimination task. (Weber’s law is of-
ten expressed as ∆I/I is a constant, where I stands for stimulus intensity, and ∆I for the
smallest difference of intensity that can just be discriminated, sometimes called the just no-
ticeable difference. In the case simulated, the stimuli were vibrotactile frequencies, hence the
use of f to denote the frequencies of the stimuli.)

The analysis shown in Figs. 5.7 and 5.8 suggests that Weber’s law, and consequently the
ability to discriminate two stimuli, is encoded in the probability of performing a transition to
the correct final attractor. To reinforce this hypothesis, Fig. 5.9 shows that Weber’s law is not
encoded in the firing rates of the VPC decision-making neurons that were modelled. Deco and
Rolls (2006) simulated again a situation corresponding to the cases where f1 is larger than f2
by a ∆-value, and therefore the network will perform correctly when the dynamics perform a
transition to the final single attractor corresponding to high activity in the population (f1>f2)
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Fig. 5.9 Final stationary spiking rate of the (f1<f2) population (after transients) as a function of the differ-
ence between the two vibrotactile frequencies to be compared, for the cases where this population cor-
rectly won the competition and the network has performed a transition to the proper attractor. The plots
show the results obtained with the spiking simulations. (The diamond-points correspond to the average
values over 200 trials, and the error bars to the standard deviation.) The lines correspond to the mean-field
calculations. The firing rate of the population encoding the result of the comparison is relatively indepen-
dent of f2 and of the difference between f1 and f2, for the range of parameter values shown. (After Deco
and Rolls 2006.)

and low activity in the population (f1<f2). Figure 5.9 plots for three different frequencies
f2, the firing rate of the (f1<f2) population (for the cases where this population correctly
won the competition and the network has performed a transition to the proper attractor) as a
function of the difference between the two vibrotactile frequencies to be compared. The plots
show the results obtained with the spiking simulations. The diamond-points correspond to
the average values over 200 trials, and the error bars to the standard deviation. The lines show
the results of the mean-field calculations. A good agreement between the spiking simulations
and the corresponding mean-field results is observed. The most interesting observation is the
fact that the firing rate of the population (f1>f2) in the correct attractor, for different base
frequencies f2 and for different differences between f1 and f2 (∆f), is practically constant.
Thus the firing rate of the population encoding the result of the comparison does not encode
Weber’s law. What happens is that the attractor dynamics makes a binary choice. The decision
is reflected in a high firing rate of one population, and a low firing rate of the other population.
These high and low firing rates thus reflect the binary choice, and depend rather little on ∆f.
Thus even for an equal value of f1 and f2, the attractor network makes a binary choice, with
the probability of which choice is made reflecting ∆f, but the firing rate that is reached as a
result of the choice reflecting ∆f very little. (In fact a small increase in firing rate is evident in
Fig. 5.9 as ∆f increases, and we show in Chapter 6 that this is related to decision confidence.)

The model also gives further insights into the mechanisms by which Weber’s law is
implemented. We hypothesized that because ∆f/f is practically constant in the model, the
difference of frequencies ∆f required to push the single attractor network towards an attractor
basin might increase with f because as f increases, shunting (divisive) inhibition produced by
inhibitory feedback inputs (from the inhibitory interneurons) might act divisively on the pyra-
midal cells in the attractor network to shunt the excitatory inputs f1 and f2. In more detail,
as the base frequency f increases, more excitation will be provided to the network by the
inputs λ1 and λ2, this will tend to increase the firing rates of the pyramidal cells which will
in turn provide a larger excitatory input to the inhibitory neurons. This will tend to make the
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Fig. 5.10 The conductance in nS (mean ± sd) produced by the GABA inputs to the pyramidal cells as a
function of the base frequency f1. The effective conductance produced through the GABA synapses (i.e.
IGABA/(V − VI)) was averaged over the time window in which the stimuli were presented in one of the
excitatory neuron pools, when the base frequency was f1, and f2-f1 was set to 8 Hz. (After Deco and Rolls
2006.)

inhibitory neurons fire faster, and their GABA synapses onto the pyramidal cells will be more
active. Because these GABA synapses open chloride channels and act with a driving potential
VI = −70 mV which is relatively close to the membrane potential (which will be in the range
VL = −70 mV to Vthr = −50 mV), a large part of the GABA synaptic input to the pyramidal
cells will tend to shunt, that is to act divisively upon, the excitatory inputs to the pyramidal
cells from the vibrotactile biasing inputs λ1 and λ2. To compensate for this current shunting
effect, f1 and f2 are likely to need to increase in proportion to the base frequency f in order
to maintain the efficacy of their biasing effect. To assess this hypothesis, we measured the
change in conductance produced by the GABA inputs as a function of the base frequency.
Figure 5.10 shows that the conductance increases linearly with the base frequency (as does
the firing rate of the GABA neurons, not illustrated). The shunting effect does appear there-
fore to be dividing the excitatory inputs to the pyramidal cells in the linear way as a function
of f that we hypothesized.

Deco and Rolls (2006) therefore proposed that Weber’s law is implemented by shunting
effects acting on pyramidal cells that are produced by inhibitory neuron inputs which increase
linearly as the base frequency increases, so that the difference of frequencies ∆f required to
push the network reliably into one of its decision attractors must increase in proportion to the
base frequency. We checked the excitatory inputs to the pyramidal cells (for which VE = 0
mV), and found that their conductances were much smaller (in the order of 5 nS for the
AMPA and 15 nS for the NMDA receptors) than those produced by the GABA receptors,
so that it is the GABA-induced conductance changes that dominate, and that produce the
shunting inhibition.

Further properties of the attractor network model of decision-making that enable it to
implement Weber’s law include stability of the spontaneous firing rate condition, even when
the decision cues are applied, so that the system depends on the noise to escape this starting
state, as described in Section 5.8.
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Fig. 5.11 Reaction time distribution for the decision-making attractor network described in Chapter 6. The
difference between the two stimuli was relatively small (∆I=16 Hz, though sufficient to produce 81%
correct choices). The criterion for the reaction time was the time after application of both stimuli at which
the firing rate of the neurons in the correct attractor became 25 Hz or more greater than that of the neurons
in the incorrect attractor, and remained in that state for the remainder of the trial.

5.6.5 Reaction times

Because of the noise-driven stochastic nature of the decision-making, the reaction times even
for one set of parameters vary from trial to trial. An example of the distribution of reaction
times of the attractor network are shown in Fig. 5.11. This distribution is for a case when
the difference between the two stimuli is relatively small (∆I = 16 Hz for the simulations
described in Chapter 6, though sufficient to produce 81% correct choices). The considerable
variability of the reaction times across trials, and the long tail of the probability distribution,
provide a very useful basis for understanding the variability from trial to trial that is evident
in human choice reaction times (Welford 1980). Indeed, human studies commonly report
skewed reaction time distributions with a long right tail (Luce 1986, Ratcliff and Rouder
1998, Ratcliff, Zandt and McKoon 1999, Usher and McClelland 2001, Marti et al. 2008).

The reaction times of this model of decision-making are faster when the discrimination is
easy, in this case when the difference between f2 and f1 is large. This is analysed in Fig. 5.12.
We calculated for a fixed f2=25 Hz and different f1>f2 (from 1 Hz to 13 Hz), the probability
of correct or incorrect discrimination, and the corresponding reaction time. The reaction time
was the time that the winning population ((f1>f2) for the correct cases, and (f1<f2) for the
incorrect cases) took to cross a threshold of a firing rate of 20 Hz. (We considered the averaged
reaction time over 200 trials.) Figure 5.12A plots the relation between the reaction time and
the probability of correct classification. The larger the probability of correct classification, the
faster is the decision-making, which is reasonable and consistent with the decision-making
literature. Figure 5.12B plots the reaction time of an incorrect decision, as a function of the
probability of performing a misclassification. The behaviour is now the converse, in that a
low probability of incorrect discrimination implies also shorter reaction times. This means
that the reaction time of a correct or incorrect classification is relatively similar, and therefore
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Fig. 5.12 Reaction time as a function of the probability of being correct or incorrect. Results are shown
for a fixed f2=25 Hz and different f1>f2 (from 1 Hz to 13 Hz). The reaction time was the time that the
winning population ((f1>f2) for the correct cases, and (f1<f2) for the incorrect cases) took to cross a
threshold of 20 Hz. (The reaction time was averaged across 200 trials.) (a) Reaction time as a function
of the probability of correct classification. The larger the probability the faster is the decision-making. (b)
Reaction time of an incorrect decision, as a function of the probability of performing a misclassification.
(After Deco and Rolls 2006.)

the dependence on the probability of a correct or incorrect classification is inverted.
Further analyses of reaction times as a function of the easiness of the decision are shown

in Figs. 6.2, 6.3b, and 6.11.

5.6.6 Finite-size noise effects
The results described earlier indicate that the probabilistic settling of the system is related
to the finite size noise effects of the spiking dynamics of the individual neurons with their
Poisson-like spike trains in a network of limited size. The concept here is that the smaller the
network, the greater will be the statistical fluctuations (i.e. the noise) caused by the random
spiking times of the individual neurons in the network. In an infinitely large system, the
statistical fluctuations would be smoothed out, and reach zero. To investigate this further, and
to show what sizes of network are in practice influenced by these finite-size related statistical
fluctuations, an important issue when considering the operation of real neuronal networks
in the brain, Deco and Rolls (2006) simulated networks with different numbers of neurons,
N . The noise due to the finite size effects is expected to increase as the network becomes
smaller, and indeed to be proportional to 1/

√
N . We show in Fig. 5.13 the effects of altering

N on the operation of the network, where N = NE + NI, and NE : NI, was held at 4:1 as
in the simulations shown earlier. The simulations were for f1=30 Hz and f2=22 Hz. Figure
5.13 shows overall that when N is larger than approximately 1,000, the network shows the
expected settling to the (f1 > f2) attractor state on a proportion of occasions that is in the
range 85–93%, increasing only a little as the number of neurons reaches 4,000 (top panel).
The settling remains probabilistic, as shown by the standard deviations in the probability that
the (f1 > f2) attractor state will be reached (top panel). When N is less than approximately
1,000, the finite size noise effects become very marked, as shown by the fact that the network
reaches the correct attractor state (f1>f2) much less frequently, and in that the time for a
decision to be reached can be premature and fast, as the large fluctuations in the stochastic
noise can cause the system to reach the criterion [in this case of a firing rate of 20 Hz in the
pool (f1>f2)] too quickly.

The overall conclusion of the results shown in Fig. 5.13 is that the size of the network,
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Fig. 5.13 The effects of altering N , the number of neurons in the network, on the operation of the deci-
sion-making network. The simulations were for f1=30 Hz and f2=22 Hz. The top panel shows the probabil-
ity that the network will settle into the correct (f1>f2) attractor state. The mean ± the standard deviation
is shown. The middle panel shows the time for a decision to be reached, that is for the system to reach a
criterion of a firing rate of 20 Hz in the pool (f1>f2). The mean ± the standard deviation of the sampled
mean is shown. The bottom panel shows the standard deviation of the reaction time. (After Deco and
Rolls 2006.)

N , does influence the probabilistic settling of the network to the decision state. None of
these probabilistic attractor and decision-related settling effects would of course be found in
a mean-field or purely rate simulation, without spiking activity. The size of N in the brain is
likely to be greater than 1,000 (and probably in the neocortex in the range 4,000–12,000) (see
Table 1.1). With diluted connectivity, the relevant parameter is the number of connections per
neuron (Amit and Brunel 1997).

It will be of interest to investigate further this scaling as a function of the number of
neurons in a population with a firing rate distribution that is close to what is found in the
brain, namely close to exponential (Franco, Rolls, Aggelopoulos and Jerez 2007) (see Section
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1.11.3.2), as the firing rate distribution, and the sparseness of the representation, will influence
the noise in the network. The results shown in Fig. 5.13 are for a sparseness of 0.1, and a
binary firing rate probability distribution (i.e. one in which all the neurons in the winning
attractor have the same average high firing rate, and the other neurons in the network have a
low firing rate). Initial results of E.T.Rolls and T.Webb suggest that there is more noise with a
biologically plausible approximately exponential firing rate distribution of the type illustrated
in Fig. 1.14. The underlying cause may be the large noise contributed by the few neurons with
rather high firing rates, given that for a Poisson distribution the variance increases with (and
is equal to) the mean rate.

5.7 Properties of this model of decision-making
Key properties of this biased attractor model of decision-making are now described.

5.7.1 Comparison with other models of decision-making

In the attractor network model of decision-making described in this book and elsewhere
(Wang 2002, Deco and Rolls 2006, Wang 2008, Deco, Rolls and Romo 2009b, Rolls, Graben-
horst and Deco 2010b, Rolls, Grabenhorst and Deco 2010c), the decisions are taken proba-
bilistically because of the finite size noise due to spiking activity in the integrate-and-fire
dynamical network, with the probability that a particular decision is made depending on the
biasing inputs provided by the sensory stimuli f1 and f2.

The model described here is different in a number of ways from accumulator or counter
models which may include a noise term and which undergo a random walk in real time, which
is a diffusion process (Ratcliff, Zandt and McKoon 1999, Carpenter and Williams 1995) (see
further Wang (2002), Wang (2008), and Usher and McClelland (2001)). First, in accumulator
models, a mechanism for computing the difference between the stimuli is not described,
whereas in the current model this is achieved, and scaled by f, by the feedback inhibition
included in the attractor network.

Second, in the current attractor network model the decision corresponds to high firing
rates in one of the attractors, and there is no arbitrary threshold that must be reached.

Third, the noise in the current model is not arbitrary, but is accounted for by finite size
noise effects of the spiking dynamics of the individual neurons with their Poisson-like spike
trains in a system of limited size.

Fourth, because the attractor network has recurrent connections, the way in which it settles
into a final attractor state (and thus the decision process) can naturally take place over quite a
long time, as information gradually and stochastically builds up due to the positive feedback
in the recurrent network, the weights in the network, and the biasing inputs, as shown in Figs.
5.5 and 5.6.

Fifth, the recurrent attractor network model produces longer response times in error trials
than in correct trials (Wong and Wang 2006, Rolls et al. 2010c) (see Chapter 6), consistent
with experimental findings (Roitman and Shadlen 2002). Longer reaction times in error trials
can be realized in the diffusion model only with the additional assumption that the starting
point varies stochastically from trial to trial (Ratcliff and Rouder 1998).

Sixth,the diffusion model never reaches a steady state and predicts that performance can
potentially improve indefinitely with a longer duration of stimulus processing, e.g. by rais-
ing the decision bound. In the recurrent attractor network model, ramping activity eventually
stops as an attractor state is reached (Fig. 6.2). Consequently performance plateaus at suffi-
ciently long stimulus-processing times (Wang 2002, Wang 2008).
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Seventh, the attractor network model has been shown to be able to subtract negative sig-
nals as well as add positive evidence about choice alternatives, but the influence of newly
arriving inputs diminishes over time, as the network converges towards one of the attractor
states representing the alternative choices (Wang 2002, Wang 2008). This is consistent with
experimental evidence (Wong, Huk, Shadlen and Wang 2007). This violation of time-shift in-
variance cannot be accounted for by the inclusion of a leak in the linear accumulator model. In
fact, in contrast to the recurrent attractor network model, the linear leaky competing accumu-
lator model, which takes into account a leakage of integration and assumes competitive inhi-
bition between accumulators selective for choice alternatives (Usher and McClelland 2001),
actually predicts that later, not earlier, signals influence more the ultimate decision, because
an earlier pulse is gradually ‘forgotten’ due to the leak and does not affect significantly the
decision that occurs much later (Wong et al. 2007).

The approach described here offers therefore a new, alternative, approach to this type of
linear diffusion model, in the sense that the new attractor network model is nonlinear (due
to the positive feedback in the attractor network), and is derived from and consistent with
the underlying neurophysiological experimental data. The model thus differs from traditional
linear diffusion models of decision-making used to account for example for human reaction
time data (Luce 1986, Ratcliff and Rouder 1998, Ratcliff et al. 1999, Usher and McClelland
2001). The non-linear diffusion process that is a property of the attractor network model is
analyzed further in Section A.6.1.

The model of decision-making described here is also different to a model suggested by
Sugrue, Corrado and Newsome (2005) in which it is suggested that the probabilistic relative
value of each action directly dictates the instantaneous probability of choosing each action
on the current trial. The present model shows how probabilistic decisions could be taken
depending on the two biasing inputs (λ1 and λ2 in Fig. 5.3, which could be equal) to a biased
competition attractor network subject to statistical fluctuations related to finite size noise in
the dynamics of the integrate-and-fire network.

5.7.2 Integration of evidence by the attractor network, escaping time,
and reaction times

An interesting aspect of the model is that the recurrent connectivity, and the relatively long
time constant of the NMDA receptors (Wang 2002), may together enable the attractor network
to accumulate evidence over a long time period of several hundred milliseconds. Important
aspects of the functionality of attractor networks are that they can accumulate and maintain
information.

A more detailed analysis suggests that there are two scenarios that are needed to under-
stand the time course of decision-making (Marti, Deco, Mattia, Gigante and Del Giudice
2008).

First, in the scenario investigated by Wang (2002), the spontaneous state is unstable when
the decision cues are applied. The network, initially in the spontaneous state, is driven to a
competition regime by an increase of the external input (that is, upon stimulus presentation)
that destabilizes the initial state. The decision process can then be seen as the relaxation
from an unstable stationary state towards either of the two stable decision states (see Fig.
5.14 (right)). When the system is completely symmetric, i.e. when there is no bias in the
external inputs that favours one choice over the other, this destabilization occurs because the
system undergoes a pitchfork bifurcation for sufficiently high inputs. The time spent by the
system to evolve from the initial state to either of the two decision states is determined by the
actual stochastic trajectory of the system in the phase space. In particular, the transition time
increases significantly when the system wanders in the vicinity of the saddle that appears
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when the spontaneous state becomes unstable. Reaction times in the order of hundreds of
ms may be produced in this way, and are strongly influenced by the long time constants of
the NMDA receptors (Wang 2002). The transition can be further slowed down by setting the
external input slightly above the bifurcation value. This tuning can be exploited to obtain
realistic decision times.

Second, there is a scenario in which the stimuli do not destabilize the spontaneous state,
but rather increase the probability for a noise-driven transition from a stable spontaneous
state to one of the decision states (see Fig. 5.14 (centre) and Section 5.8). Due to the presence
of finite-size noise in the system there is a nonzero probability that this transition occurs
and hence a finite mean transition rate between the spontaneous and the decision states. It
has been shown that in this scenario mean decision times tend to the Van’t Hoff-Arrhenius
exponential dependence on the amplitude of noise in the limit of infinitely large networks. As
a consequence, in this limit, mean decision times increase exponentially with the size of the
network (Marti, Deco, Mattia, Gigante and Del Giudice 2008). Further, the decision events
become Poissonian in the limit of vanishing noise, leading to an exponential distribution
of decision times. For small noise a decrease in the mean input to the network leads to an
increase of the positive skewness of decision-time distributions.

These results suggest that noise-driven decision models as in this second scenario provide
an alternative dynamical mechanism for the variability and wide range of decision times
observed, which span from a few hundred milliseconds to more than one second (Marti et
al. 2008). In this scenario (see Section 5.8), there is an escaping time from the spontaneous
firing state. In this time the information can be thought of as accumulating in the sense that the
stochastic noise may slowly drive the firing rates in a diffusion-like way such than an energy
barrier is jumped over and escaped (see Fig. 2.5 on page 73 and Fig. 2.6). In this situation, a
landscape can be specified by a combination of the synaptic weights and external decision-
related input evidence that biases the firing rates of the decision attractors, as described in
Section 2.3. The noise introduced into the network by for example the random neuronal
spiking can be conceptualized as influencing the way that the system flows across this fixed
landscape shaped by the synaptic weights, and by the external inputs if they remain on during
operation of the network.

The model for the second scenario, with a stable spontaneous state even when the decision
cues are being applied, makes specific predictions about reaction times. One, in relation to
∆f / f, is shown in Fig. 5.12. Further predictions about reaction times are shown in Figs.
6.3 and 6.11, and a fuller analysis showing that there will be a gamma-like distribution with
an exponential tail of long reaction times in the reaction time distribution with this second
scenario is provided by Marti et al. (2008).

5.7.3 Distributed decision-making

Although the model described here is effectively a single attractor network, we note that the
network need not be localized to one brain region. Long-range connections between cortical
areas enable networks in different brain areas to interact in the way needed to implement a
single attractor network. The requirement is that the synapses between the neurons in any
one pool be set up by Hebb-like associative synaptic modification, and this is likely to be
a property of connectivity between areas (using forward and backprojections, see Section
1.9), as well as within areas (Rolls and Treves 1998, Rolls and Deco 2002). In this sense,
the decision could be thought of as distributed across different brain areas. Consistent with
this, Romo and colleagues have found neurons related to vibrotactile decisions not only in
the ventral premotor cortex (VPC), but in a number of connected brain areas including the
medial premotor cortex, as described in Section 5.3.



Probabilistic decision-making162 |

In order to achieve the desired probabilistic settling behaviour, the network we describe
must not have very high inhibition, and, related to this, may sometimes not settle into one of
its attractor states. In a forced choice task in which a decision must be reached on every trial,
a possible solution is to have a second decision-making network, with parameters adjusted so
that it will settle into one of its states (chosen at chance) even if a preceding network in the
decision-making chain has not settled. This could be an additional reason for having a series
of networks in different brain regions involved in the decision-making process.

In any case, we believe that there are decision-making networks, that is, networks that
can reach a categorical state, in many cortical areas, each specializing in taking a decision
about the information represented in that region (see Section 8.12). In this situation, a be-
havioural decision may reflect the operation of a number of partly separate, and partly se-
quential, decision-making processes.

5.7.4 Weber’s law

Deco and Rolls (2006) showed that with this attractor-based model of decision-making, the
relevant parameters for the decision to be made to a criterion of a given per cent correct
about whether f1 is different from f2 by the network are found not to be the absolute value
of f1 or f2, but the difference between them scaled by their absolute value. If the difference
between the two stimuli at which they can be discriminated ∆f = f1-f2, then it is found that
∆f increases linearly as a function of the base frequency f2, which is Weber’s law. The results
show that Weber’s law does not depend on the final firing rates of neurons in the attractor,
but instead reflects the nature of the probabilistic settling into a decision-related attractor,
which depends on the statistical fluctuations in the network, the synaptic connectivity, and
the difference between the bias input frequencies f1 and f2 scaled by the baseline input f2.

Weber’s law is usually formulated as ∆f / (f0 + f) = a constant, where f0 allows the bottom
part of the curve to asymptote at f0. In vision, f0 is sometimes referred to as ‘dark light’. The
result is that there is a part of the curve where ∆f is linearly related to f, and the curve of ∆f
vs f need not go through the origin. This corresponds to the data shown in Fig. 5.8.

An analysis of the non-stationary evolution of the dynamics of the network model, per-
formed by explicit full spiking simulations, shows that Weber’s law is implemented in the
probability of transition from the initial spontaneous firing state to one of the two possible
attractor states. In this decision-making paradigm, the firing rates of neurons in the VPC en-
code the outcome of the comparison and therefore the decision and motor response, but not
how strong the stimuli are, i.e. what Weber called ‘sensation’ (as described for example in
a detection task by de Lafuente and Romo (2005)). The probability of obtaining a specific
decision, i.e. of detecting a just noticeable difference, is encoded in the stochastic dynamics
of the network. More specifically, the origin of the fluctuations that will drive the transitions
towards particular decisions depends on the connectivity between the different populations,
on the size of the populations, and on the Poisson-like spike trains of the individual neurons
in the system. In other words, the neural code for the outcome of the decision is reflected in
the high rate of one of the populations of neurons, but whether the rate of a particular pop-
ulation becomes high is probabilistic. This means that an essential part of how the decision
process is encoded is contained in the synapses, in the finite size of the network, and in the
Poisson-like firing of individual neurons in the network.

The statistical fluctuations in the network are due to the finite size noise, which approxi-
mates to the square root of the (firing rate / number of neurons in the population) (see Mattia
and Del Giudice (2002)), as shown in Fig. 5.13. This is the first time we know when the
implementation of a psychophysical law is not the firing rate of the neurons, nor the spike
timing, nor is single neuron based, but instead is based on the synaptic connectivity of the
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network and on statistical fluctuations due to the spiking activity in the network.
The way in which the system settles (i.e. the probability of reaching one attractor state

vs the other from the initial spontaneous state, and the time it takes) depends on factors that
include the distortion of the attractor landscapes produced by the biasing inputs λ1 and λ2

which will influence both the shapes and the depth of the attractor basins, and the finite size
noise effects. Of particular importance in relation to Weber’s law is likely to be that when λ1

and λ2 increase, the increased firing of the neurons in the two attractors results in more act-
ivity of the inhibitory feedback neurons, which then produce effectively divisive inhibition on
the principal cells of the attractor network. This is reflected in the conductance change pro-
duced by the GABA inputs to the pyramidal cells shown in Fig. 5.10. The inhibitory feedback
is mainly divisive because the GABA-activated channels operate primarily as a current shunt,
and do not produce much hyperpolarization, given that VI is relatively close to the mem-
brane potential. After the division implemented by the feedback inhibition, the differential
bias required to push the network reliably into one of the attractors must then be larger, and
effectively the driving force (λ1 − λ2 or ∆λ) must get larger in proportion to the inhibition.
As the inhibition is proportional to λ, this produces the result that ∆λ/λ is approximately
a constant. We thus propose that Weber’s law, ∆I/I is a constant, is implemented in part
by shunting effects acting on pyramidal cells that are produced by inhibitory neuron inputs
which increase linearly as the baseline input I increases, so that the difference of intensities
∆I required to push the network reliably into one of its attractors must increase in proportion
to the base input I . Another part of the mechanism appears to be the noise-driven stochas-
tic process of jumping out of a stable state of spontaneous firing in what we describe as a
multistable operating regime, as described in Section 5.8.

We emphasize that this account (Deco and Rolls 2006) of Weber’s law is intended to be a
general account, and is not restricted to the particular data set or brain system against which
the development of the model described here was validated.

A prediction of the model is that Weber’s law for frequency discrimination could be
implemented not by the firing rate of a given population of neurons (which reflects just the
discrete decision taken), but by the probability that a particular population will be activated,
which depends on ∆f / f. This prediction could be tested by a trial-by-trial analysis of the
neurophysiological data in which the firing of neurons at different base frequencies f and
for different ∆f is measured, to investigate whether the type of result shown in Fig. 5.7, and
thereby in Fig. 5.8, which are derived from the model, are also found in the neuronal data
from the experiments, and this would also usefully confirm that Weber’s law holds at the
neuronal level in this particular vibrotactile task with a delay. In particular, although Romo,
Hernandez and Zainos (2004) in their figure 5 show that choice probability and neuronal
activity increases as a function of f2-f1, we predict that neurons should follow the functions
shown in Figs. 5.7 and 5.8 for different values of ∆f and f, and it would be of interest to test
this prediction.

We note that Weber’s law holds in most though not all discrimination situations, and to
the extent that Weber’s law does generally hold, the model described here provides a com-
putational neuroscience-based account of how it arises. This is the first time we know when
the implementation of a psychophysical law is not the firing rate of the neurons, nor the spike
timing, nor is single neuron based, but instead is based on the synaptic connectivity of the
network and on statistical fluctuations due to the spiking activity in the network.

5.7.5 Unifying principles

In summary, we now have a model for how attractor networks could operate by biased comp-
etition to implement probabilistic decision-making. This type of model could operate in very
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many brain areas, as described in Section 8.12. This model of decision-making is part of the
larger conceptual issue of how memory networks retrieve information. In this case the short-
term memory property of the attractor network helps the network to integrate information
over time to reach the decision. Although retrieval of information from attractor networks
has been intensively studied using inter alia approaches from theoretical physics (see Section
1.10, Amit (1989), and Rolls and Treves (1998)), the way in which the retrieval is probabilis-
tic when an integrate-and-fire implementation with spiking neurons is considered has been
less studied. The approaches of Brunel and Wang (2001) and Deco and Rolls (2006) do open
up the issue of the probabilistic operation of memory networks with spiking dynamics.

We may raise the conceptually important issue of why the operation of what is effectively
memory retrieval is probabilistic. Part of the answer is shown in Fig. 5.13, in which it is
seen that even when a fully connected recurrent attractor network has 4,000 neurons, the
operation of the network is still probabilistic. In this network of 4,000 neurons, there were
3,600 excitatory neurons and 360 neurons represented each pattern or decision (that is, the
sparseness a was 0.1). The firing rates of the neurons corresponded to those found in VPC,
with rates above 20 spikes/s considered to be a criterion for the attractor state being reached,
and 40–50 spikes/s being typical when fully in the attractor state (see Fig. 5.9). Under these
conditions, the probabilistic spiking of the excitatory (pyramidal) cells is what introduces
noise into the network. (Deco and Rolls (2006) showed that it is this noise in the recurrent
collateral firing, rather than external noise due to variability in the inputs, which makes the
major contribution to the probabilistic behaviour of the network.) Thus, once the firing in
the recurrent collaterals is spike implemented by integrate-and-fire neurons, the probabilistic
behaviour seems inevitable, even up to quite large attractor network sizes.

To investigate the ‘decision-related’ switching of these systems, it may be important to
use a firing rate distribution of the type found in the brain, in which few neurons have high
rates, more neurons have intermediate rates, and many neurons have low rates (see Section
1.11.3). It is also important to model correctly the proportion of the current that is being
passed through the NMDA receptors (which are voltage-dependent), as these receptors have
a long time-constant, which will tend to smooth out short-term statistical fluctuations caused
by the stochastic firing of the neurons (cf. Wang (1999)), and this will affect the statistics of
the probabilistic switching of the network. This can only be done by modelling integrate-and-
fire networks with the firing rates and the firing rate distributions found in a cortical area.

Reasons why the brain is inherently noisy are described in Section 2.4.

Applications of this model of decision-making are described in Chapter 8.

5.8 A multistable system with noise
In the situation illustrated in Figs. 2.5 and 5.1, there is multistability, in that the spontaneous
state and a large number of high firing rate persistent states are stable. More generally, and
depending on the network parameters including the strengths of the inputs, a number of dif-
ferent scenarios can occur. These are illustrated in Fig. 5.14. Let us consider the activity of a
given neuronal population while inputs are being applied.

In Fig. 5.14 (left) we see a situation in which only the spontaneous state S is stable. This
might occur if the external inputs λ1 and λ2 are weak.

On the right we have a situation in which our neuronal population is either in a high firing
rate stable state C2, or in a low firing rate state C1 because another population is firing fast
and inhibiting our neuronal population. There is no stable spontaneous state.



| 165A multistable system with noise

Fig. 5.14 Computational principles underlying the different dynamical regimes of the decision-making
attractor network (see text). The x-axis represents the neuronal activity of one of the populations (νi)
and the landscape represents an energy landscape regulating the evolution of the system. S is a stable
state of spontaneous activity, C2 is a high firing rate state of this neuronal population corresponding to the
choice implemented by this population, and C1 is a low firing rate state present when the other population
wins the competition.

In the middle of Fig. 5.14 we see a situation in which our population may be either in C1,
or in C2, or in a spontaneous state of firing S when no population has won the competition.
We emphasize that this can be a scenario even when the decision cues λ1 and λ2 are being
applied during the decision-making period. We refer to this system as a multistable system.

The differences between these scenarios are of interest in relation to how noise influences
the decision-making. In the scenario shown in the middle of Fig. 5.14 we see that there are
three stable states when the inputs λ1 and λ2 are being applied, and that it is the stochastic
noise that influences whether the system jumps from the initial spontaneous state to a high
firing rate state in which one of the decision-state populations fires fast, producing either C2
if our population wins, or C1 if our population loses. The statistical properties of the noise
(including its amplitude and frequency spectrum), and the shape of the different basins in the
energy landscape, influence whether a decision will be taken, the time when it will be taken,
and which high firing rate decision attractor wins. In contrast, in the scenario shown in Fig.
5.14 (right) the energy landscape when the stimuli are being applied is such that there is no
stable spontaneous state, so the system moves to one of the high firing rate decision attract-
ors without requiring noise. In this case, the noise, and the shape of the energy landscape,
influence which high firing rate decision state attractor will win.

In an exploration of the neural network described in this Chapter that models vibrotactile
flutter frequency discrimination in humans, Deco, Scarano and Soto-Faraco (2007b) found
that the neurodynamical mechanisms and computational principles underlying the decision-
making processes in this perceptual discrimination task are consistent with a fluctuation -
driven scenario in a multistable regime of the type illustrated in Fig. 5.14 (middle) as incorp-
orated in the model of Deco and Rolls (2006). Deco et al. (2007b) used a mean-field analysis
with a system of nonlinear coupled differential equations of the Wilson-Cowan type (Renart
et al. 2003, La Camera et al. 2004) to describe the evolution of the average firing rate of each
population, and added a noise fluctuation term to drive the transitions.

Fig. 5.14 represents schematically the different ways in which the network could operate,
depending on the value of λ, the input, as shown by a mean-field analysis. The x-axis rep-
resents the neuronal activity of one of the populations (νi) and the landscape represents an
energy landscape regulating the evolution of the system. The energy landscape reflects the
synaptic values and the effects of the incoming sensory information (the λ1 and λ2 values in
Fig. 5.1). For values of λ < λc1=20 Hz (Fig. 5.14, left panel), only the spontaneous state is
stable, and no decision states appear (for the unbiased case, i.e. when λ1 = λ2). For increas-
ing ∆λ (biased case), one decision state (corresponding to the choice where the increased
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value of λ + ∆λ is applied) emerges, attracting the dynamics towards this decision state.
For values of λ between λc1=20, λc2=40 Hz (Fig. 5.14, middle panel) there is a region of
multi-stability, with the spontaneous state and each of the two decision states all stable. In
this λ interval, the fluctuations are responsible for driving the system from the initial stable
spontaneous state to one of the two decision states corresponding to the two possible response
choices. (C2 is a high firing rate of the population shown in Fig. 5.14 middle that corresponds
to the decision implemented by that population of neurons.) Thus, in this scenario, fluctu-
ations play a crucial role in the computation of decision-making. It is only in this region
that Weber’s law is found to apply to the network, as described in this Chapter. For values
of λ > λc2=40 Hz (Fig. 5.14, right panel) a region of bistability is found where the initial
spontaneous state is unstable, and only the two decision states are stable. In this regime, the
spontaneous state destabilizes, so that the dynamics rapidly evolves towards one of the two
decision states, resembling therefore a pure diffusion integrating the relative evidence for one
choice over another. The fact that the network can implement Weber’s law, and does so only
in a range of values for λ in which the network operates as a fluctuation-driven multistable
system, provides further evidence to support the hypothesis that decision-making is implem-
ented by a multistable fluctuation-driven attractor system, where there are in the unbiased
case stable states for the spontaneous firing state, and for each of the decisions.

With respect to the multistable scenario (in the middle of Fig. 5.14), the attractor network
acts as a short-term memory that can accumulate evidence over time, and usually gradually
though stochastically the firing rates of the two groups of neurons corresponding to the two
choices diverge, one set of neurons stochastically increasing their firing rate, and the other set
being inhibited by the first set of neurons. A situation like this is probably occurring in Fig.
5.5, and is analyzed in more detail by Marti et al. (2008). We can illustrate this point by the
middle landscape in Fig. 5.14, and note that the accumulation of evidence corresponds to the
position in the space indicated by the ball moving noisily in a direction towards for example
C2, but not yet jumping over the energy barrier into the C2 attractor.

It is important to stress that the effect of the noise is particularly relevant in the multi-
stable regime (middle of Fig. 5.14), because the fluctuations are the driving force that allow
the system to escape the decision barriers around the stable spontaneous state. In the multi-
stable scenario, the choices are associated with stable attractors, and the starting condition is
also given by a stable spontaneous state. To make a decision, the system has to escape the
stable spontaneous state towards one of the choice-attractors. (This is related to the so called
‘Kramers’ escape problem’ (Kramers 1940)). On the other hand, in the bistable regime (right
of Fig. 5.14), the so called ‘ballistic’ regime), the noise is of course relevant as the basis of the
diffusion process, but it is not the main driving force. This is because in the bistable scenario
the spontaneous state is not a stable state, and therefore with or without noise, the system will
necessarily evolve to one or the other decision-attractor just because of the neurodynamical
flow (Deco and Marti 2007a, Deco and Marti 2007b).

Another interesting aspect of the model is that the recurrent connectivity, and the relat-
ively long time constant of the NMDA receptors (Wang 2002), together enable the attractor
network to accumulate evidence over a long time period of several hundred milliseconds. This
is an important aspect of the functionality of attractor networks. Nevertheless, long reaction
times can also be obtained without NMDA receptors, using the alternative scenario of multi-
stability (Marti, Deco, Mattia, Gigante and Del Giudice 2008). In this case, the level of noise
is the main variable that drives the escape from the stable spontaneous firing rate state, and
low levels of noise can produce long reaction times.


