
1

File: VisNetMat1Doc21v1.docx: Updated 1 July 2021

VisNetMat1C is a Matlab-only tutorial implementation of VisNet (Rolls, 2021a).

This software is made available with Rolls (2021a) Brain Computations: What and How. Oxford

University Press.

For the background literature see (Rolls, 2021a), (Rolls, 2021b) and (Rolls, 2012).

Rolls, E. T. (2021b) Learning invariant object and spatial view representations in the brain using slow

unsupervised learning. Frontiers in Computational Neuroscience 15: 686239. doi:

10.3389/fncom.2021.686239 and

https://www.oxcns.org/papers/516%20Rolls%202012%20Invariant%20visual%20object%20and%20f

ace%20recognition.pdf

© copyright E T Rolls, Oxford Centre for Computational Neuroscience, https://www.oxcns.org

No warranty express or implied is provided: this is academic research software.

If this software is used or adapted for new published research, it is requested that the original

publications, which provide details, are cited.

1. VisNetMat1C

This is a Matlab-only version of VisNet mainly for tutorials / teaching / demonstration.

The current version is in /VisNetMat1C

For VisNetMat1C, the files are VisNetDriver7.m, CreateNet.m, SetIMLIST.m, train.m, test.m, info.m,

DisplaySynWeights.m, gui.m and gui.fig.

The information analysis routines infors_visnet.m and inform_visnet.m and the function phims.m are

provided in /VisNetMat1C.

The images are in \imagedata\

In VisNetMat1C, run VisNetDriver7.m to test the system. This program expects to find the images

in base_dir, which needs to be specified in setIMLIST.m along the following lines:

base_dir = 'c:\imagedata\128image_9\'; % this has just the first 9 objects

For testing with larger numbers of images, up to 50, the following has been made:

base_dir = 'C:\imagedata\128image_copy_50Both\128image_copy_50\'; % this has 50 objects with

interpolated views for testing

In either case, you need to modify the path in the SetIMLIST.m file to enable the \imagedata directory

to be found on your computer.

1.1 To set up VisNet1C for the first time the following is suggested:

1.1.1. Create a directory VisNetMat

Place the unzipped folder VisNetMat1C into folder VisNetMat.

Create a directory VNanalysis inside VisNetMat. There need be nothing in this.

1.1.2 Make sure that you have a folder imagedata/ on your system.

This might contain subfolders /testbars256 and /128image_9, which are filtered image folders for 3

bars with 3 views and 9 objects with 9 views respectively. The filtering has been performed using the

code in /VisNetUtilities to produce Gabor-filtered representations of the images similar to what is

represented in the primary visual cortex, V1. There is a zip file with the 128image_9 folder in it. The

zip file should be unzipped, and the folder placed in \imagedata. The same can be performed for

/testbars256.

1.1.3 In Matlab, set up the base_dir in setIMLIST.m as described above.

2

Note: Windows 10 uses '\' in paths, and linux uses '/' in paths. The code is set up for Windows 10. If

you are using a different type of operating system, you may need to alter '\' to '/' throughout the code.

This applies to Macs, which should be set up to use a linux-style path.

Check this wherever a directory path is shown in all .m files.

1.1.4 Make sure that in VisNetDriver7.m, near line 63,

CreateNetFlag = 1;

This will make sure that a new net with random weights and connections such as netUntrained32.mat

is built in /VNanalysis/

On future runs, to save time building the net again, you can set

CreateNetFlag = 0;

But for quantitative studies it is better to create a new net each time, with the random number

generator set “rng('shuffle');” near line 68 of VisNetDriver7.m

1.1.5 /imagedata may contain both /testbars256 and /128image_copy

In SetIMLIST.m, set ImageSet=1 for /testbars256, and ImageSet=2 for /128image_9.

1.1.6 When you run VisNetDriver7.m, it should run and produce 100% correct and ObjectSelectivity

close to 1for ImageSet=1, and a bit less for ImageSet=2. If it does not, check the above.

Next, try the gui (graphical user interface) by typing 'gui' in the Matlab command window to explore

the operation of VisNet.

The ObjectSelectivity measure takes a maximum value of one when all the views of any object are

highly correlated with each other, and are orthogonal to the views of all other objects.

The function also displays a correlation matrix, which shows the correlations first between all view of

object 1, then all views of object 2, etc.

A view here corresponds to a transform.

To measure the capacity, a plot could be made of the ObjectSelectivity or the Percent Correct as a

function of the number of objects in the training set.

A criterion for the capacity could be selected, such as the number of objects in the training set at

which the ObjectSelectivity decreases below e.g. 0.8, or the Percent Correct drops below 80%.

Note that the Object Selectivity measure takes the rate of all neurons in a layer into account. In

contrast, the Information and Percentage correct take into account the 5 most selective and invariant

cells for each object.

The multiple cell information analysis program inform_visnet.m is called by VisNetDriver7.m via

info(4), and shows the Percent Correct and Smoothed information I_p as another measure of

performance. The program inform_visnet.m by default shows the information based on the 5 best

cells for all the objects defined by N_GROUPS, but can be edited to show the information for all 1 to

5 * N_GROUPS cells.

1.2 The Graphical User Interface (GUI) to look at the outputs produced by VisNet.

After a run has finished, the GUI can be started by

gui

and the files are gui.m and gui.fig built using guide (guide(‘gui.fig’)).

In the gui, do not alter 'Loc' from its value of 1, for translation to different locations is not

implemented and needs to be learned.

Clicking on neuron in the layer firing rate window (top left) will set X, Y and the cell number in their

boxes, and will update the firing display.

Setting a cell number in its box, then clicking Update, will update X and Y in their boxes, and will

update the neuron firing rate display. Update should be used when changing a layer, view etc.

All gui coordinates, group, loc and layer numbers start at 1, which corresponds to the numbering used

in Matlab.

In the Rates vs Transforms window for a cell, the order is:

 Transform1 Transform2 etc, where each transform is a different view etc

3

The Dot Product measure shown in the terminal output is a dot product matrix showing the

correlations between the stimuli in the firing rate vector to each stimulus. In the diagonal, a value of

1.0 reflects perfect rates of 1.0 to every transform of that stimulus. The rates are also saved to

NeuronRates.mat.

For the cell locations within a layer shown as X and Y in the gui, 1,1 is the top left and 128,128 (or

whatever NET_SIZE is set to) is the bottom right.

If the gui is resized, the X,Y coordinates may not be returned correctly from the layer firing rate

display (top left).

[The following is not implemented in VisNetMat1C: If the Layer is 1, the Point (bottom left), Gauss

(second from left), and FilterSum (third from left) images are updated. Clear will clear what is being

accumulated by successive updates in these 3 windows.]

[If programming the gui, it is useful to close the gui (by clicking on the icon in the top left of the gui

window), so that the altered code in gui.m starts afresh.

Guide writes to gui.fig to place the boxes etc in the gui window.

1.3 Parameters that can be changed to investigate how they affect performance:

NET_SIZE: This can be set to 16, 32, 64 128 or 256.

This enables investigation of how the size of the network affects the performance.

Suitable performance measure are the ObjectSelectivity, the Percent Correct, and the Multiple cell

information, which should be close to log_2(NumberofObjects) if the system is categorizing the

Objects separately and in a transform-invariant way.

The first time that a new NET_SIZE is investigated, CreateNetFlag should be 1 to create a new

UntrainedNetwork in ..\VNanalysis. After that, to save the net creation time, CreateNetFlag

can be set to 0, and the UnTrainedNet will be read in.

However, for NET_SIZE=16, or 32 CreateNetFlag should be always be 1, as small nets are fast to

create.

However, for systematic unbiased analyses, it is good to create a new network each time, and make

sure a new random number is being selected in VisNetDriver7. The average of several runs can then

be used.

TrainEpochs = [10 10 10 10]; should normally be used to allow convergence during the learning, but

can be reduced to say [5 5 5 5) for rapid exploration of parameters.

NSYN = [272 100 100 100]; % synapses per neuron; sets the number of synapses per neuron

for layers 1-4. The 272 should be left unchanged unless you alter NSYNL1 too. For layers 2-4, higher

capacities can normally be obtained by increasing this number to 500 or even 1000. With a small net,

if the number of synapses is set too high, the net cannot be created, as a high number of synapses may

not fit into a small radius of connectivity to the preceding layer.

SPARSENESS = [0.01 0.01 0.01 0.01]; % the sparseness for each layer. Works for NET_SIZE 32

to 256. This sets the sparseness of the firing. Too low a value will make VisNet a look-up table; too

large a value will prevent VisNet from discriminating between the stimuli, because the firing rates to

the different stimuli will be somewhat similar.

N_GROUPS = 9; % number of objects. Alter this to measure how the performance depends on

the number of objects; and test how this varies with different NET_SIZE values.

N_VIEWS = 9; % number of transforms of each object for learning : this should ideally be set to

the number of transforms; BUT if there are fewer transforms available, each of the transforms can be

repeated several times, to produce a list of 9 (or more), as a list of this length is required for trace rule

learning. During training, VisNet selects a random set of 5 of the views of an object and presents them

to allow the trace of previous firing to build up, and then the N_VIEWS are presented with synaptic

modification to allow learning.

N_VIEWS_TEST = 9; % number of transforms for testing: 9 for objects, 3 for bars : this is

normally the same as N_VIEWS, but if the actual number of views is fewer as for ImageSet

=1, then N_VIEWS_TEST should be reduced to the number of different views / transforms.

ImageSet can be 1 (bars) or 2 (Amsterdam Library of Images, ALOI, objects); but you can create new

image sets.

SIGMOID = 1; % set this to 1 for sigmoid activation function, 0 for linear threshold

4

BETA = [1 1 1 1] * 10; % beta, the slope of the sigmoid activation function for the neurons in each

layer.

LATERALINHIB = 1; % 1 for convolution of the firing rates in a layer with a lateral inhibition

filter. 0 for none. The lateral inhibition filter has a width of 0.2 and a sd of 4 with a Sum of zero, so

that a neuron inhibits its neighbours to help a diversity of representations to be learned. The filter is in

dog1_0.2_4.mat, and was created with the program dogeg.m

ETA = [0.0 0.8 0.8 0.8]; % the trace value for each layer : a higher value increases the

proportion of the previous firing in the trace used for the learning, relative to the firing being

contributed by current inputs. Increasing this value will mean that more training epochs are needed.

No trace is used for layer 1, which utilizes associative learning only.

LRNRATE = [0.1 0.1 0.1 0.1] *5; % for the synaptic modification rule (default 0.1) : The

amount by which the synaptic weights can change in a single epoch of training. A lower value will

mean that more training epochs are needed. A higher value will result in the risk that recently trained

stimuli over-write what has been learned about previous stimuli in the list. If the error correction rule

at about line 270 in train.m is in use, the above learning rate works. If the standard associative

learning rule is in use, the learning rate should be closer to LRNRATE = [0.1 0.1 0.1 0.1];

Notes:

It is instructive after a run to type 'info(3)', 'info(2)', and 'info(1)' to show that the object selectivity

becomes lower towards earlier layers, as expected for VisNet given that it is a hierarchical network

with convergence from layer to layer. The amount of convergence is set for each layer by:

receptiveFieldWidth = [15 7 7 7]; % the width of the Gaussian region from which a neuron

receives connections. This is automatically scaled for different NET_SIZEs. These receptive field

widths can be changed and can be explored in the gui, with ImageSet=1 useful for this.

Setting receptiveFieldWidth(1) = 3; may improve performance by maintaining relatively small high-

spatial resolution receptive fiels in layer 1. If this number is too small, the net will not build, because

CreateNet cannot find the number of different synapses specified with a small receptive field width.

VisNetMat1C has been tested with up to NET_SIZE=256 x 256 = 64,768 neurons per layer (259,072

neurons across the 4 layers) and 5000 synapses per neuron (NSYN = [272 5000 5000 5000]). (Layers

2-4 between them have 971,520,000 synapses (approximately 109.)

N_FILTER_FREQS = 4; % or 8. The default is 4, as this is biologically realistic, and prevents too

much apparent translation invariance in layer 1.

The gui uses /analysis/Sweep.mat, so make sure that Sweep.mat is from the run being analyzed.

If the program fails at the information analysis stage, check that infors_visnet.m sets up appropriate

numbers for

max_c = 65536; % /* max no of cells, was 1024, then 16384, then 65536 for 256 * 256 VisNet */

max_s = 50; % /* max no of stimuli*/

Images are filtered with FilterConv4.m in gaborL, which adds to FilterConv3.m the production of a

single file with the extension .filt that contains all the filtered component images.

The program VisNetMat1C/CreateImages.m shows how to create simple images such as horizontal

and vertiucal bars. The images then need toi be filtered. The filtered images used are 512x512 for

each component, for all NET_SIZE (16, 32, 64, 128 and 256).

For 32x32 VisNetMat1C, and 512x512 filtered files, run time is 46 s for 5 epochs, 3 objects, 9 views

and NSYNS 272 100 100 100.

This loads an untrained Net, which otherwise takes some time to build, and is built in

VisNetDriver7.m if CreateNetFlag=1.

5

For 128x128 VisNet, and 512x512 filtered files, run time is 186 s for 5 epochs, 3 objects, 9 views and

NSYNS 272 100 100 100.

The performance of 32x32 is good using no lateral inhibition, and a threshold linear activation

function to set the sparseness at 0.05. Projects could examine the potential advantages of lateral

inhibition, and a sigmoid activation function, the Matlab code for which is part of

VisNetMat1C.

If training is with fewer than 9 views, then it is suggested that the images need to be replicated in

IMLIST which is used for train, with a separate IMLIST_TEST for testing.

Possible research projects include the following:

One is to see whether this Matlab-only version can be improved to run faster, and whether the code

can be improved to produce better invariance learning for larger numbers of objects.

Another is to measure the capacity of VisNetMat1C and how it scales up, investigating the effect of

NET_SIZE, the number of synapses on each neuron, the sparseness, the activation function, lateral

inhibition etc. The number of objects in the test set can be changed by altering N_GROUPS.

An interesting aspect of this is to test the Net with images that are different from the training views

(typically 40 degrees apart) by being interpolated (at e.g. 20 deg from the nearest trained view).

VisNetMat1C is written to facilitate this, by saving a trained net, and then loading a different set of

filtered images for testing.

2. Image preparation using Gabor filtering:

Code for creating and filtering test images is in VisNetImageFiltering.zip

The test images are created with CreateRawImage.m or CreateImages.m, and FilterConv4.m.

ALOI images can be cropped, scaled, centred, and contrast adjusted then filtered with

ALOIprocessing3_v2.m. That shows effectively how to take an image in any format, and prepare it

for use with VisNet. Blenderprocessing.m can be used if the images are created with Blender.

The software is in VisNetImageFiltering/gaborL3/ which can conveniently be copied into the

imagedata/ directory on the computer, which can also contain a directory such as /BlenderIm/ for

images produced by FilterConv4.m in /gaborL3/ .) . Note that FilterConv4.m now replaces

FilterConv3.m.

Example of use: to filter a new image, e.g. face01L3, which is a 256 * 256 image in a flat file of uint8

(i.e. unsigned bytes in the range 0-255):

 place the image into /imagedata/ImageDir (which you need to make, and or wherever you

wish for the base directory as specified in the call to FilterConv4),

 edit VisNetImageFiltering/gaborL3/FilterConv4.m to ensure that it shows the correct number

of spatial frequencies to compute. The default from 28 Jan 2013 is freqlist = [1 2 4 8].

 In matlab, cd VisNetImageFiltering/gaborL3, FilterConv4(‘face01L3’, ‘ImageDir’, Triples)

where Triples=0 (symmetric filtered output only),

 or Triples=1 to have in each row triples of (symmetric, asymmetric, asymmetric+180deg).

 (That is column 0 will have the symmetric filter value for column 0

 column 1 will have the asymmetric filter_left value for column 1

 column 2 will have the asymmetric filter_right value for column 2)

The current recommendation is Triples=0.

e.g. cd VisNetImageFiltering/gaborL3 (and assume there is directory imagedata/bars256 which

contains an image vbars256)

FilterConv4(‘vbars256’, ‘c:/imagedata/vbars256/’,0)

6

FilterConv4.m can be edited to

 Set Display=0 (no Display), or Display=1

 Alter the frequencies computed, which are [1 2 4 8 16 32 64 128], or as better and as supplied

with [1 2 4 8], appropriate for VisNetMat1C which expects a 256x256 image to be supplied. (The

software places the 256x256 grayscale image into a 512x512 blank background to prevent wrap-

around effects.)

 Fsize, the filter size, is set to 512 for 512x512 filtered images for VisNetMat1C.

FilterConv4.m expects with Fsize=512 a 256x256 flat 8 bits per pixel (uint8, range 0-255) image to

be supplied, which it pads to 512x512 smoothing it into a 127 gray level background. The image

supplied should have a mean close to 127, and the contrast for different images in a training set should

be similar to each other.

FilterConv4.m uses an fft-based convolution. (convolve2() can be provided which is fast for the large

filter which is not usually used.)

/gaborL3/ contains all the gabor filters, already computed for 4 spatial frequencies from .1 up to .8.

(To remake the gabor filters use MakeGaborFilters.m.)

FilterConv4 places all its filtered images into a subdirectory image.filtered/, which also contains the

original 256x256 image, and image128.dat which is used for the VisNet display image and which

has the image as 64x64 on a 128x128 background of level=127.

In FilterConv4.m set Display=2 to show the for Posim, Negim etc. If Display >0, be prepared to touch

a key on the keyboard when the program pauses.

TestFiltered.m will display the filtered images as a check, e.g.

 TestFiltered('ramp.dat')

 TestFiltered(‘face01L3’)

 Edit it first to make sure that the paths are correct, and that the Fsize and freqs are as in the

filtered images. It is set up for Fsize=512.

dispRawImage(‘filename’, dim) with dim=256 will display a 256 x 256 uint8 image 65536 bytes long

such as that used to show in VisNet a picture of a test image.

e.g. dispRawImage('ramp.dat', 256)

e.g. dispRawImage('bmwETR_0.0’, 256)

It will also create simple test images such as bars (in the current directory).

ALOIprocessing (using ALOIprocessing3_v2.m)

cd VisNetImageFiltering/gaborL3

make sure that there is a directory /imagedata/ALOI containing the ALOI images to process,

edit datapath in ALOIprocessing3_v2.m

edit filenamebase in FilterConv4.m

then

ALOIprocessing3_v2 (in Matlab)

should process all the ALOI images, taking in a typical case 42 s for every view of one ALOI object.

The resizing, image contrast setting, and filtering is implemented in this code. imadjust is used and is

better than histeq for setting the image contrast.

ALOI_processing3_v2.m also writes the cropped and contrast adjusted image as a .png to the

output as an easy data check.

Processing of Blender Images

7

/imagedata/BlenderIm contains the objects, each in directories like /1, /2 etc

cd /imagedata/gaborL3

matlab &

BlenderProcessing.m which calls FilterConv4.m in the same directory.

[The rest of this Blender software is not in this directory

To view a set of Blender images:

show_Blender_png_array (for 6 objects)

show_Blender_png_array2 (for 7 objects, and improved display of a whole image)]

Use of Blender software to make test images:

Install blender version 2.66 from blender.org which contains ‘cycles’ functionality.

Unpack the blender-2.66-linux…tar.bz2, and make sure that all the files are placed in the /home/erolls/blender directory.

(It may be useful to set blender to produce RGBA images with alpha, the transparency layer of a .png file, set, using the

option ‘straightalpha, though render.py may set this.)

./blender -b man.blend -P /home/erolls/blender/render.py

This calls /VisNetM3/scaleTranspng.m to scale each transparent .png and then place it on a 127 grayscale background, and

FilterConv4.m to filter the images.

Further Blender files including a useful Readme from Tristan Webb are in

VISNET_DOCUMENTATION/VisNetMatlabDoc2014/BlenderWebb/]

References

Rolls ET. 2012. Invariant visual object and face recognition: neural and computational bases,

and a model, VisNet. Front Comput Neurosci 6, 35:1-70.

Rolls ET. 2021a. Brain Computations: What and How. Oxford: Oxford University Press.

Rolls ET. 2021b. Learning invariant object and spatial view representations in the brain using

slow unsupervised learning. Front Comput Neurosci 15:686239.

