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Abstract—Neurophysiological evidence is described, showing that some neurons in the macaque temporal
cortical visual areas have responses that are invariant with respect to the position, size and view of faces
and objects, and that these neurons show rapid processing and rapid learning. A theory is then described
of how such invariant representations may be produced in a hierarchically organized set of visual cortical
areas with convergent connectivity. The theory proposes that neurons in these visual areas use a modified
Hebb synaptic modification rule with a short-term memory trace to capture whatever can be captured
at each stage that is invariant about objects as the object changes in retinal position, size, rotation and
view. Simulations are then described which explore the operation of the architecture. The simulations show
that such a processing system can build invariant representations of objects. © 1997 Elsevier Science Ltd.
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1. INTRODUCTION

This paper draws together evidence on how infor-
mation about visual stimuli is represented in the tem-
poral cortical visual areas, and on how representations
that are invariant with respect to the position, size and
even view of objects are formed. The evidence comes
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from neurophysiological studies of single neuron
activity in primates. It also comes from closely related
theoretical studies which consider how the represen-
tations may be set up by learning in a multistage
cortical architecture. The neurophysiological evidence
considered comes in part from neural systems involved
in processing information about faces, because with
the large number of neurons devoted to this class of
stimuli, this system has proved amenable to
experimental analysis. However, recent evidence also
described suggests that there may be a similar neural
system that produces invariant representations of
non-face objects (Rolls et al., 1996b).
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2. NEUROPHYSIOLOGY OF THE
TEMPORAL CORTICAL VISUAL AREAS

2.1. Visual Cortical Areas in the Temporal Lobes

Visual pathways project via a number of cortico-
cortical stages from the primary visual cortex until
they reach the temporal lobe visual cortical areas
(Seltzer and Pandya, 1978; Maunsell and Newsome,
1987; Baizer et al., 1991). The inferior temporal visual
cortex, area TE, is divided into a set of subareas, and
in addition there is a set of different areas in the
cortex in the superior temporal sulcus (Seltzer and
Pandya, 1978; Baylis et ai., 1987) (see Fig. 1). Of these
latter areas, TPO receives inputs from temporal,
parietal and occipital cortex; PGa and IPa from
parietal and temporal cortex; and TS and TAa
primarily from auditory areas (Seltzer and Pandya,
1978). There is considerable specialization of function
in these areas (Baylis et al., 1987). For example, areas
TPO, PGa and IPa are multimodal, with neurons
which respond to visual, auditory and/or somatosen-
sory inputs; the inferior temporal gyrus and adjacent
areas (TE3, TE2, TE1, TEa and TEm) are primarily
unimodal visual areas; areas in the cortex in the
anterior and dorsal part of the superior temporal
sulcus (e.g. TPO, IPa and IPg) have neurons
specialized for the analysis of moving visual stimuli;
and neurons responsive primarily to faces are found
more frequently in areas TPO, TEa and TEm (Baylis
et al., 1987), where they comprise approximately 20%
of the visual neurons responsive to stationary stimuli,
in contrast with the other temporal cortical areas in
which they comprise 4-10%. The neurons which
respond to non-face stimuli and the other neurons
that respond to faces often require two or more
simple features to be present in the correct spatial
relationship in order to respond (Perrett et al., 1982;
Tanaka et al., 1990, Tanaka et al., 1991; Rolls er al.,
1994).

2.2. Distributed Encoding of Identity

The neurons described as having responses
selective for faces are selective in that they respond
from two to 20 times more (and statistically
significantly more) to faces than to a wide range of
gratings, simple geometrical stimuli, or complex
three-dimensional objects (see Rolls, 1984, 1992b;
Baylis er al., 1985, 1987). The selectivity of these
neurons for faces has been quantified recently using
information theory. This showed that these neurons
reflected much more information about which (of 20)
face stimuli had been seen (on average 0.4 bits) than
about which (of 20) non-face stimuli had been seen
(on average 0.07 bits) (Tovee and Rolls, 1995).

These neurons thus reflect information not just
that a face has been seen, but about which face has
been seen. They respond differently to different faces.
An important question for understanding brain
computation is whether a particular object (or face)
is represented in the brain by the firing of one or a
few gnostic (or “grandmother” or “‘cardinal™) cells
(Barlow, 1972), or whether instead the firing of a
group or ensemble of cells, each with somewhat
different responsiveness, provides the representation,

as the data indicate for faces (Baylis er al., 1985).
A recent way in which the fineness of tuning of these
neurons to individual faces has been quantified is
by measurement of the sparseness of the represen-
tation, a:

a= (25=1.S rs/S)z/Zs= LS (VE/S)

where r, is the mean firing rate to stimulus s in the set
of § stimuli. The sparseness has a maximum value of
1.0 and a minimum value close to zero (1/S, if a
neuron responded to only one of the S stimuli in a
set of stimuli). [The interpretation of this measure can
be made clear by means of an example. If a neuron
had a binary firing rate distribution, with a high rate
to some stimuli and no response to others, and the
neuron responded to 50% of the stimuli, the
sparseness of its representation would be 0.5 (fully
distributed). If a neuron responded to just 10% of the
stimuli, the sparseness of its representation would be
0.1 (sparse)]. For a sample of these cells for which the
responses were tested to a set of 23 faces and 45
natural scenes, it was found that the sparseness of the
representation of the 68 stimuli had an average for
the set of neurons of 0.65 (Rolls and Tovee, 1995a).
If the spontaneous firing rate was subtracted, then the
“response sparseness” for these neurons was 0.33
(Rolls and Tovee, 1995a). It is suggested that the
utility of this rather distributed encoding within the
class faces is that it may enable the maximum
information about a set of stimuli to be provided by
a population of neurons (subject to a constraint on
the average firing rate of the neurons — see Baddeley
et al., 1997). Such a distributed representation would
be ideal for discrimination, for the maximum
information suitable for comparing fine differences
between different stimuli would be made available
across the population (if 50% were active to each
stimulus). In contrast, it is suggested that more sparse
representations are used in memory systems such as
the hippocampus, because this helps to maximize the
number of different memories that can be stored (see
Rolls and Tovee, 1995a; Treves and Rolls, 1994).
Although this rather distributed representation is
present in the temporal cortical visual areas, it is

Fig. 1. Lateral view of the macaque brain (left) and coronal

section (right) showing the different architectonic areas (e.g.

TEm, TPO) in and bordering the anterior part of the

superior temporal sulcus (STS) of the macaque (see text).

The coronal section is through the temporal lobe 133 mm

P (posterior) to the sphenoid reference (shown on the lateral
view).
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certainly not fully distributed. If the information
provided by a single neuron about each of the stimuli
in a set of stimuli is calculated, then it is found that
the amount of information about individual stimuli
can be as high as 1.5-2 bits for some stimuli (usually
those which elicit the highest firing rate), and may
approach zero for the stimuli in the set which produce
responses that are close to the mean response of the
neuron to the stimuli (Rolls er al., 1997). The
advantages of this type of sparse distributed
representation for cognitive processing include
generalization to similar stimuli (in the Hamming
distance sense, see Rolls and Treves, 1997), graceful
degradation (fault tolerance), and some locality to the
representation, so that some single neurons which
receive inputs from such a representation can obtain
sufficient information without requiring an enormous
fan in, that is number of synapses (Rolls et al.,
1996a). (The number of synapses per neuron in the
cerebral cortex is in the order of 5000, and only a
proportion of these inputs will be active in any one
20 msec period.)

This information-theoretic approach has focused
on how visual information about what is being
looked at in the world is represented by the activity
of individual neurons. How does the process scale
with more neurons than one? Evidence recently has
been obtained that the information available about
which visual stimulus (which of 20 equiprobable
faces) had been shown increases linearly with the
number of neurons in the sample (Rolls er al., 1996a;
Abbott et al., 1996). Because information is a
logarithmic measure, this indicates that the number

- of stimuli encoded rises approximately exponentially,
as the number of cells in the sample increases. The
consequence of this is that large numbers of stimuli,
and fine discriminations between them, can be
represented without having to measure the activity of
an enormous number of neurons. For example, the
results of the experiments of Rolls et al., 1996a)
indicate that the activity of 15 neurons would be able
to encode 192 face stimuli (at 50% accuracy), of 20
neurons 768 stimuli, of 25 neurons 3072 stimuli, of 30
neurons 12288 stimuli, and of 35 neurons 49152
stimuli (Abbott ez al., 1996; the values are for an
optimal decoding case). This means that it is now
possible to read the code about face identity from the
end of this part of the visual system. By measuring the
firing rates of relatively small numbers (tens) of
neurons, we know which (of potentially hundreds or
thousands) of visual stimuli are being looked at by
the monkey. It is of interest that much information
is available from the firing rates of an ensemble of
neurons, with no account being taken of the relative
time of firing of the spikes in the different neurons (cf
Engel et al., 1992).

2.3. A Neuronal Representation of Faces and
Objects Showing Invariance

One of the major problems which must be solved
by a visual system used for object recognition is the
building of a representation of visual information
which allows recognition to occur relatively indepen-
dently of size, contrast, spatial frequency, position on
the retina, and angle of view, etc. We have shown that

many of the neurons whose responses reflect face
identity have responses that are relatively invariant
with respect to size and contrast (Rolls and Baylis,
1986); spatial frequency (Rolls ef al., 1985, Rolls
et al., 1987); and retinal translation, i.e. position in
the visual field (Tovee ef al., 1994; cf earlier work by
Gross, 1973, Gross et al., 1985). Some of these
neurons even have relatively view-invariant re-
sponses, responding to different views of the same
face but not of other faces (Hasselmo et al., 1989a).
It is clearly important that invariance in the visual
system is made explicit in the neuronal responses, for
this simplifies greatly the output of the visual system
to memory systems such as the hippocampus and
amygdala, which can then remember or form
associations about objects. The function of these
memory systems would be almost impossible if there
were no consistent output from the visual system
about objects (including faces), for then the memory
systems would need to learn about all possible sizes,
positions etc of each object, and there would be no
easy generalization from one size or position of an
object to that object when seen with another retinal
size or position.

Although the neurons just described have view-in-
variant responses, there is another population of
face-selective neurons, found particularly in the
cortex in the superior temporal sulcus, which tends to
have view-dependent responses (Perrett et al., 1985a;
Hasselmo et al., 1989b). Some of these neurons have
responses which reflect the facial expression but not
the facial identity of the stimulus (Hasselmo et al.,
1989a). These neurons could be useful in providing
information of potential use in social interactions
(Rolls, 1984, 1990, 1992a; Perrett et al., 1985b).
Damage to this population and to brain areas to
which these neurons project may contribute to the
deficits in social and emotional behaviour produced
by temporal or ventral frontal lobe damage (see
Rolls, 1984,1990, 1991, 1992, 1995a, 1996b; Leonard
et al., 1985; Hornak et al., 1996).

To investigate whether view-invariant represen-
tations of objects are also encoded by some neurons
in the inferior temporal cortex of the rhesus macaque,
the activity of single neurons was recorded while
monkeys were shown very different views of 10
objects (Rolls er al., 1996b). The stimuli were
presented for 0.5 sec on a colour video monitor while
the monkey performed a visual fixation task. The
stimuli were images of 10 real plastic objects which
had been in the monkey’s cage for several weeks, to
enable him to build view invariant representations of
the objects. Control stimuli were views of objects
which had never been seen as real objects. The
neurons analysed were in the TE cortex in and close
to the ventral lip of the anterior part of the superior
temporal sulcus. Many neurons were found that
responded to some views of some objects. However,
for a smaller number of neurons, the responses
occurred only to a subset of the objects, irrespective
of the viewing angle. These neurons thus conveyed
information about which object has been seen,
independently of view, as confirmed by information
theoretic analysis of the neuronal responses. Each
neuron did not, in general, respond to only one
object, but instead responded to a subset of the
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objects. Thus, they showed ensemble, sparse-dis-
tributed, encoding. The information available about
which object was seen increased approximately
linearly with the number of neurons in the ensemble.
These experiments provide preliminary evidence that
there is a view-invariant representation of objects, as
well as faces, in the primate temporal cortical visual
areas.

Until now, research on translation invariance has
considered the case in which there is only one object
in the visual field. The question then arises of how the
visual system operates in a cluttered environment. Do
all objects that can activate an inferior temporal
neuron do so whenever they are anywhere within the
large receptive fields of inferior temporal cortex
neurons? If so, the output of the visual system might
be confusing for structures which receive inputs from
the temporal cortical visual areas. To investigate this
we measured the responses of inferior temporal
cortical neurons with face-selective responses in
rhesus macaques performing a visual fixation task.
We found that the response of neurons to an effective
face centred 8.5° from the fovea was decreased to
71% if an ineffective face stimulus for that cell was
present at the fovea. If an ineffective stimulus for a
cell is introduced parafoveally when an effective
stimulus is being fixated, then there was a similar
reduction in the responses of neurons. More
concretely, the mean firing rate across all cells to a
fixated effective face with a non-effective face in the
periphery was 34 spikes/sec. On the other hand, the
average response to a fixated non-effective face with
an effective face in the periphery was 22 spikes/sec.
(These firing rates reflected the fact that in this
population of neurons, the mean response for an
effective face was 49 spikes/sec with the face at the
fovea, and 35 spikes/sec with the face 8.5° from the
fovea.) Thus, these cells gave a reliable output about
which stimulus is actually present at the fovea, in that
their response was larger to a fixated effective face
than to a fixated non-effective face, even when there
are other parafoveal stimuli ineffective or effective for
the cell (Rolls and Tovee, 1995b). Thus, the cell
provides information biased towards what is present
at the fovea, and not equally about what is present
anywhere in the visual field. This makes the interface
to action simpler, in that what is at the fovea can be
interpreted (e.g. by an associative memory) partly
independently of the surroundings, and choices and
actions can be directed if appropriate to what is at the
fovea (cf Ballard, 1993). These findings are a step
towards understanding how the visual system
functions in a normal environment.

2.4. Learning of New Representations in the
Temporal Cortical Visual Areas

Given the fundamental importance of providing an
ensemble-encoded representation of faces and objects
which nevertheless has quite finely tuned neurons,
experiments have been performed to investigate
whether experience plays a role in determining the
selectivity of single neurons which respond to faces.
The hypothesis being tested was that visual
experience might guide the formation of the

responsiveness of neurons so that they provide an
economical and ensemble-encoded representation of
items actually present in the environment. To test
this, Rolls et a/. (1989) investigated whether the
responses of temporal cortex face-selective neurons
were at all altered by the presentation of new faces
which the monkey had never seen before. It might be,
e.g., that the population would make small
adjustments in the responsiveness of its individual
neurons, so that neurons would acquire tuning
properties which would enable the population as a
whole to discriminate between the faces actually seen.
Thus, they investigated whether when a set of totally
novel faces was introduced, the responses of these
neurons were fixed and stable from the first
presentation, or instead whether there was some
adjustment of responsiveness over repeated presenta-
tions of the new faces. Firstly, it was shown for each
neuron tested that its responses were stable over 5-15
repetitions of a set of familiar faces. Then a set of new
faces was shown in random order (with 1 sec for each
presentation), and the set was repeated with a new
random order over many iterations. Some of the
neurons studied in this way altered the relative degree
to which they responded to the different members of
the set of novel faces over the first few (from one to
two) presentations of the set (Rolls et /., 1989). If,
in a different experiment, a single novel face was
introduced when the responses of a neuron to a set
of familiar faces was being recorded, it was found
that the responses to the set of familiar faces were not
disrupted, while the responses to the novel face
became stable within a few presentations. Thus, there
is now some evidence from these experiments that the
response properties of neurons in the temporal lobe
visual cortex are modified by experience, and that the
modification is such that when novel faces are shown,
the relative responses of individual neurons to the
new faces alter (Rolls ez al., 1989). It is suggested that
alteration of the tuning of individual neurons in this
way results in a good discrimination over the
population as a whole of the faces known to the
monkey. This evidence is consistent with the
categorization being performed by self-organizing
competitive neuronal networks, as described below
and elsewhere (Rolls, 1989a, 1989b, 1989¢; Rolls and
Treves, 1997).

Further evidence that these neurons can learn new
representations very rapidly comes from an exper-
iment in which binarized black and white images of
faces which blended with the background were used.
These did not activate face-selective neurons. Full
grey-scale images of the same photographs were then
shown for 10 0.5 sec presentations. It was found in a
number of cases, if the neuron happened to be
responsive to the face, that when the binarized
version of the same face was shown next, the neurons
responded to it (Rolls ez al., 1993; Tovee et al., 1996).
This is a direct parallel to the same phenomenon
which is observed psychophysically, and provides
dramatic evidence that these neurons are influenced
by only a very few seconds (in this case 5 sec) of
experience with a visual stimulus.

Such rapid learning of representations of new
objects, which occurs in humans in a few seconds,
appears to be a major type of learning in which the
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temporal cortical areas are involved, Ways in which
this learning could occur are considered below.

It is also the case that there is a much shorter-term
form of memory in which some of these neurons are
involved, for whether a particular visual stimulus
(such as a face) has been seen recently, in that some
of these neurons respond differently to recently seen
stimuli in short-term visual memory tasks (Baylis and
Rolls, 1987; Miller and Desimone, 1994). A tendency
of some temporal cortical neurons to associate
together visual stimuli when they have been shown
over many repetitions separated by several seconds
also has been described by Miyashita and Chang
(1988); see also Miyashita (1993). In addition,
Logothetis ef al. (1994) using extensive training (600
training trials) showed that neurons could alter their
responses to different views of computer-generated
objects.

2.5. The Speed of Processing in the Temporal
Cortical Visual Areas

An important constraint on the type of processing
that could be involved in object recognition is
provided by the speed of operation of each cortical
stage invelved in object recognition. There is evidence
that it is very fast, as shown by the following. There
is a whole sequence of visual cortical processing
stages including V1, V2, V4, and the posterior
inferior temporal cortex via which information
reaches the anterior temporal cortical areas. Further,
the response latencies of neurons in V1 are about
40-50 msec, and in the anterior inferior temporal
cortical areas approximately 80-100 msec. This
suggests that each stage may need to perform
processing for only 15-30 msec before it has
performed sufficient processing to start influencing
the next stage. Consistent with this, response latencies
between V1 and the inferior temporal cortex increase
from stage to stage (Thorpe and Imbert, 1989).
Because of the importance of the speed of processing,
it has been investigated quantitatively as follows.

In a first approach, the information available in
short temporal epochs of the responses of temporal
cortical face-selective neurons about which face had
been seen was measured. It was found that if a period
of the firing rate of 50 msec was taken, then this
contained 84.4% of the information available in a
much longer period of 400 msec about which of four
faces had been seen. If the epoch was as little as
20 msec, the information was 65% of that available
from the firing rate in the 400 msec period (Tovee
et al., 1993). These high information yields were
obtained with the short epochs taken near the start
of the neuronal response, e.g. in the post-stimulus
period 100-120 msec. Moreover, it was shown that
the firing rate in short periods taken near the start of
the neuronal response was highly correlated with the
firing rate taken over the whole response period, so
that the information available from a neuron was
stable over the whole response period of the neurons
(Tovee et al., 1993). This finding was extended to the
case of a much larger stimulus set, of 20 faces. Again,
it was found that the information available in short
(e.g. 50 msec) epochs was a considerable proportion
{e.g. 65%) of that available in a 400 msec long firing

rate analysis period (Tovee and Rolls, 1995). These
investigations thus showed that there was consider-
able information about which stimulus had been seen
in short time epochs near the start of the response of
temporal cortex neurons.

The next approach was to address the issue of the
length of the period for which a cortical area must be
active to mediate object recognition. This approach
used a visual backward masking paradigm. In this
paradigm there is a brief presentation of a test
stimulus which is rapidly followed (within 1-
100 msec) by the presentation of a second stimulus
(the mask), which impairs or masks the perception of
the test stimulus. This paradigm used psychophysi-
cally leaves unanswered for how long visual neurons
actually fire under the masking condition at which the
subject can just identify an object. Although there has
been a great deal of psychophysical investigation with
the visual masking paradigm (Turvey, 1973; Breit-
meyer, 1980; Humphreys and Bruce, 1989), there is
very little direct evidence on the effects of visual
masking on neuronal activity. For example, it is
possible that if a neuron is well tuned to one class of
stimulus, such as faces, that a pattern mask which
does not activate the neuron, will leave the cell firing
for some time after the onset of the pattern mask. In
order to obtain direct neurophysiological evidence on
the effects of backward masking on neuronal activity,
we analysed the effects of backward masking with a
pattern mask on the responses of single neurons to
faces (Rolls and Tovee, 1994). This was performed to
clarify both what happens with visual backward
masking, and to show how long neurons may respond
in a cortical area when perception and identification
are just possible. When there was no mask the cell
responded to a 16 msec presentation of the test
stimulus for 200-300 msec, far longer than the
presentation time. It is suggested that this reflects the
operation of a short-term memory system im-
plemented in cortical circuitry (e.g. by associatively
modifiable connections between nearby pyramidal
cells), the potential importance of which in providing
a memory trace to guide learning is considered below.
If the mask was a stimulus which did not stimulate
the cell (either a non-face pattern mask consisting of
black and white letters N and O, or a face which was
a non-effective stimulus for that cell), then as the
interval between the onset of the test stimulus and the
onset of the mask stimulus (the stimulus onset
asynchrony, SOA) was reduced, the length of time for
which the cell fired in response to the test stimulus
was reduced. This reflected an abrupt interruption of
neuronal activity produced by the effective face
stimulus. When the SOA was 20 msec, face-selective
neurons in the inferior temporal cortex of macaques
responded for a period of 20-30 msec before their
firing was interrupted by the mask (Rolls and Tovee,
1994). (Comparable results also have been reported
for neurons responding to non-face visual stimuli by
Kovacs et al., 1995). We went on to show that under
these conditions (a test-mask stimulus onset asyn-
chrony of 20 msec), human observers looking at the
same displays could just identify which of six faces
was shown (Rolls et al., 1994).

These results provide evidence that a cortical area
can perform the computation necessary for the
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recognition of a visual stimulus in 20-30 msec, and
provide a fundamental constraint which must be
accounted for in any theory of cortical computation.
The results emphasize just how rapidly cortical
circuitry can operate. This rapidity of operation has
obvious adaptive value, and allows the rapid
behavioural responses to the faces and face
expressions of different individuals which are a
feature of primate social and emotional behaviour.
Moreover, although this speed of operation does
seem fast for a network with recurrent connections
(mediated by e.g. recurrent collateral or inhibitory
interneurons), recent analyses of networks with
analog membranes which integrate inputs, and with
spontaneously active neurons, show that such
networks can settle very rapidly (Treves, 1993;
Simmen et al., 1996).

These experiments also have implications for visual
processing in relation to top-down processing. The
evidence just described indicates that visual recog-
nition can occur (measured by the subjects saying
which face they saw) with largely feed-forward
processing. There is not time in the experiments
described for visual information to pass from V1 to
V2 to V4 and thus to posterior and then anterior
inferior temporal cortex, and back again all the way
to VI, before VI has started to process the second
visual input, that is to have its processing of the first
visual stimulus cut off by the mask.

2.6. Possible Computational Mechanisms in the
Visual Cortex for Learning Invariant
Representations

The neurophysiological findings described above,
and wider considerations on the possible compu-
tational properties of the cerebral cortex (Rolls,
1989a, 1989, 1992b, 1994), lead to the following
outline working hypotheses on object recognition by
visual cortical mechanisms (Rolls, 1992b, 1994,
1995b). The principles underlying the processing of
faces and other objects may be similar, but more
neurons may become allocated to represent different
aspects of faces because of the need to recognize the
faces of many different individuals, i.e. to identify
many individuals within the category faces.

Cortical visual processing for object recognition is
considered to be organized as a set of hierarchically
connected cortical regions consisting at least of V1,
V2, V4, posterior inferior temporal cortex (TEO),
inferior temporal cortex (e.g. TE3, TEa and TEm),
and anterior temporal cortical areas (e.g. TE2 and
TEl). (This stream of processing has many connec-
tions with a set of cortical areas in the anterior part
of the superior temporal sulcus, including area TPO.)
There is convergence from each small part of a region
to the succeeding region (or layer in the hierarchy) in
such a way that the receptive field sizes of neurons
(e.g. 1° near the fovea in V1) become larger by a
factor of approximately 2.5 with each succeeding
stage (and the typical parafoveal receptive field sizes
found would not be inconsistent with the calculated
approximations of e.g. 8° in V4, 20° in TEO and 50°
in inferior temporal cortex; Boussaoud et al., 1991)
(see Fig. 2). Such zones of convergence would overlap
continuously with each other (see Fig. 2). This
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Fig. 2. Schematic diagram showing convergence achieved
by the forward projections in the visual system, and the
types of representation that may be built by competitive
networks operating at each stage of the system from the
primary visual cortex (V1) to the inferior temporal visual
cortex (area TE) (see text). Area TEO forms the posterior
inferior temporal cortex. The receptive fields in the inferior
temporal visual cortex (e.g. in the TE areas) cross the
vertical midline (not shown). Abbreviation: LGN, lateral
geniculate nucleus.

connectivity would be part of the architecture by
which translation invariant representations are
computed. Each layer is considered to act partly as
a set of local self-organizing competitive neuronal
networks with overlapping inputs. (The region within
which competition would be implemented would
depend on the spatial properties of inhibitory
interneurons, and might operate over distances of
1-2 mm in the cortex.) These competitive nets
operate by a single set of forward inputs leading to
(typically non-linear, e.g. sigmoid) activation of
output neurons; of competition between the output
neurons mediated by a set of feedback inhibitory
interneurons which receive from many of the
principal (in the cortex, pyramidal) cells in the net
and project back (via inhibitory interneurons) to
many of the principal cells which serves to decrease
the firing rates of the less active neurons relative to
the rates of the more active neurons; and then of
synaptic modification by a modified Hebb rule, such
that synapses to strongly activated output neurons
from active input axons strengthen, and from inactive
input axons weaken (see Rolls, 1989¢; Rolls and
Treves, 1997). (A biologically plausible form of this
learning rule that operates well in such networks is

owy = kyi(x; — wy)

where k is a learning rate constant, x; is the jth input
to the ith neuron, y; is the output of the ith neuron,
and w; is the jth weight on the ith neuron; see Rolls,
1989a, 1989b, 1989c; Rolls and Treves, 1997). Such
competitive networks operate to detect correlations
between the activity of the input neurons, and to
allocate output neurons to respond to each cluster of
such correlated inputs. Thus, these networks act as
categorizers. In relation to visual information
processing, they would remove redundancy from the
input representation, and would develop low entropy
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representations of the information (cf Barlow, 1985;
Barlow er al., 1989). Such competitive nets are
biologically plausible, in that they utilize Hebb-
moedifiable forward excitatory connections, with
competitive inhibition mediated by cortical inhibitory
neurons. The competitive scheme suggested would
not result in the formation of “winner-take-all” or
“grandmother” cells, but would instead result in a
small ensemble of active neurons representing each
input (Rolls, 1989a, 1989b, 1989¢). The scheme has
the advantages that the output neurons learn better
to distribute themselves between the input patterns
(cf Bennett, 1990), and that the sparse distributed
representations formed have utility in maximizing the
number of memories that can be stored when,
towards the end of the visual system, the visual
representation of objects is interfaced to associative
memory (Rolls, 1989a, 1989b; Rolls and Treves,
1990). In that each neuron has graded responses
centred about an optimal input, the proposal has
some of the advantages with respect to hypersurface
reconstruction described by Poggio and Girosi,
1990b). However, the system proposed learns
differently, in that instead of wusing perhaps
non-biologically plausible algorithms to locate
optimally the centres of the receptive fields of the
neurons, the neurons use graded competition to
spread themselves throughout the input space,
depending on the statistics of the inputs received, and
perhaps with some guidance from Backprojections
(see Rolls, 1989a, 1989b). The finite width of the
response region of each neuron which tapers from a
maximum at the centre is important for enabling the
system to generalize smoothly from the examples
with which it has learned (cf Poggio and Girosi,
1990a, 1990b), to help the system to respond, e.g.
with the correct invariances as described below.
Translation invariance would be computed in such
a system by utilizing competitive learning to detect
regularities in inputs when real objects are translated
in the physical world. The hypothesis is that because
objects have continuous properties in space and time
in the world, an object at one place on the retina
might activate feature analysers at the next stage of
cortical processing, and when the object was
translated to a nearby position, because this would
occur in a short period (e.g. 0.5 sec), the membrane
of the post-synaptic neuron would still be in its
“Hebb-modifiable” state (caused e.g. by calcium
entry as a result of the voltage dependent activation
of NMDA receptors), and the presynaptic afferents
activated with the object in its new position would
thus become strengthened on the still-activated
postsynaptic neuron. It is suggested that the short
temporal window (e.g. 0.5 sec) of Hebb-modifiability
helps neurons to learn the statistics of objects moving
in the physical world, and at the same time to form
different representations of different feature combi-
nations or objects, as these are physically discontinu-
ous and present less regular correlations to the visual
system. Foldiak (1991) has proposed computing an
average activation of the postsynaptic neuron to
assist with the same problem. One idea here is that
the temporal properties of the biologically im-
plemented learning mechanism are such that it is well
suited to detecting the relevant continuities in the

world of real objects. Another suggestion is that a
memory trace for what has been seen in the last
300 msec appears to be implemented by a mechanism
as simple as continued firing of inferior temporal
neurons after the stimulus has disappeared, as was
found in the masking experiments described above
(see also Rolls and Tovee, 1994; Rolls et al., 1994).
This would enable pairwise association of successive
images of the same object. Rolls (1992b, 1994, 1995b)
also has suggested that other invariances, e.g. size,
spatial frequency and rotation invariance, could be
learned by a comparable process. (Early processing in
V1 which enables different neurons to represent
inputs at different spatial scales would allow
combinations of the outputs of such neurons to be
formed at later stages. Scale invariance would then
result from detecting at a later stage which neurons
are almost conjunctively active as the size of an object
alters.) It is suggested that this process takes place at
each stage of the multiple-layer cortical processing
hierarchy, so that invariances are learned first over
small regions of space, and then over successively
larger regions. This limits the size of the connection
space within which correlations must be sought.
Increasing complexity of representations could also
be built in such a multiple layer hierarchy by similar
mechanisms. At each stage or layer the self-organiz-
ing competitive nets would result in combinations of
inputs becoming the effective stimuli for neurons. In
order to avoid the combinatorial explosion, it is
proposed, following Feldman (1985), that low-order
combinations of inputs would be what is learned by
each neuron. (Each input would not be represented
by activity in a single input axon, but instead by
activity in a small set of active input axons.) Evidence
consistent with this suggestion that neurons are
responding to combinations of a few variables
represented at the preceding stage of cortical
processing is that some neurons in V2 and V4
respond to end-stopped lines, to tongues flanked by
inhibitory subregions, or to combinations of colours
(see references cited by Rolls, 1991); in posterior
inferior temporal cortex to stimuli which may require
two or more simple features to be present (Tanaka
et al., 1990); and in the temporal cortical face
processing areas to images that require the presence
of several features in a face (such as eyes, hair and
mouth) in order to respond (see above and Yamane
et al., 1988). (Precursor cells to face-responsive
neurons might, it is suggested, respond to combi-
nations of the outputs of the neurons in V1 that are
activated by faces, and might be found in areas such
as V4. It is an important part of this suggestion that
some local spatial information would be inherent in
the features which were being combined. For
example, cells might not respond to the combination
of an edge and a small circle unless they were in the
correct spatial relation to each other. [This 1s, in fact,
consistent with the data of Tanaka et al. (1990) and
with our data on face neurons, in that some face
neurons require the face features to be in the correct
spatial configuration, and not jumbled; Rolls ef al.
(1994).] The local spatial information in the features
being combined would ensure that the representation
at the next level would contain some information
about the (local spatial) arrangement of features.
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Further low-order combinations of such neurons at
the next stage would include sufficient local spatial
information so that an arbitrary spatial arrangement
of the same features would not activate the same
neuron, and this is the proposed, and limited,
solution which this mechanism would provide for the
feature binding problem (cf von der Malsburg, 1990).
By this stage of processing, a view-dependent
representation of objects suitable for view-dependent
processes such as behavioural responses to face
expression and gesture would be available.

It is suggested that view-independent represen-
tations could be formed by the same type of
computation, operating to combine a limited set of
views of objects. The plausibility of providing
view-independent recognition of objects by combin-
ing a set of different views of objects has been
proposed by a number of investigators (Koenderink
and van Doorn, 1979; Poggio and Edelman, 1990;
Logothetis er al., 1994). Consistent with the
suggestion that the view-independent representations
are formed by combining view-dependent represen-
tations in the primate visual system, is the fact that
in the temporal cortical areas, neurons with
view-independent representations of faces are present
in the same cortical areas as neurons with
view-dependent representations (from which the
view-independent neurons could receive inputs)
- (Hasselmo et al., 1989a; Perrett et al., 1987). This
solution to ‘‘object-based” representations is very
different from that traditionally proposed for
artificial vision systems, in which the relative
coordinates in three-dimensional space of the
different features of objects are stored in a database,
and general-purpose algorithms operate on these to
perform transforms such as translation, rotation, and
scale change in three-dimensional space (e.g. Marr,
1982). In the present, much more limited but more
biologically plausible scheme, the representation
would be suitable for recognition of an object, and
for linking associative memories to objects, but would
be less good for making actions in three-dimensional
space to particular parts of, or inside, objects, as the
three-dimensional coordinates of each part of the
object would not be explicitly available. Tt is
proposed, therefore, that visual fixation is used to
locate in foveal vision part of an object to which
movements must be made, and that local disparity
and other measurements of depth then provide
sufficient information for the motor system to make
actions relative to the small part of space in which a
local, view-dependent, representation of depth would
be provided (cf Ballard, 1990).

The computational processes proposed above
operate by an unsupervised learning mechanism,
which utilizes regularities in the physical environment
to enable invariant representations to be built. In
some cases, it may be advantageous to utilize some
form of mild teaching input to the visual system, to
enable it to learn for example that rather similar
visual inputs have very different consequences in the
world, so that different representations of them
should be built. In other cases, it might be helpful to
bring representations together, if they have identical
consequences, in order to use storage capacity
efficiently. It is proposed elsewhere (Rolls, 1989a,

1989b) that the Backprojections from each adjacent
cortical region in the hierarchy (and from the
amygdala and hippocampus to higher regions of the
visual system) play such a role by providing guidance
to the competitive networks suggested above to be
important in each cortical area. This guidance, and
also the capability for recall, are it is suggested
implemented by Hebb-modifiable connections from
the backprojecting neurons to the principal (pyrami-
dal) neurons of the competitive networks in the
preceding stages (Rolls, 198%9a, 1989b; Rolls and
Treves, 1997).

The computational processes outlined above use
distributed coding with relatively finely tuned
neurons with a graded response region centred about
an optimal response achieved when the input
stimulus matches the synaptic weight vector on a
neuron. The distributed encoding would help to limit
the combinatorial explosion, to keep the number of
neurons within the biological range. The graded
response region would be crucial in enabling the
system to generalize correctly to solve e.g. the
invariances. However, such a system would need
many neurons, each with considerable learning
capacity, to solve visual perception in this way. This
is fully consistent with the large number of neurons
in the visual system, and with the large number of,
probably modifiable, synapses on each neuron (e.g.
5000). Further, the fact that many neurons are tuned
in different ways to faces is consistent with the fact
that in such a computational system, many neurons
would need to be sensitive (in different ways) to faces,
in order to allow recognition of many individual faces
when all share a number of common properties.

3. A NETWORK MODEL OF INVARIANT
VISUAL OBJECT RECOGNITION

To test and clarify the hypotheses just described
about how the visual system may operate to learn

Layer 2

Layer 1

Fig. 3. Stylized image of the VisNet four-layer network.

Convergence through the hierarchical network is designed to

provide fourth layer neurons with information from across
the entire input retina.
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Fig. 4. Local lateral inhibition is implemented between nearby cells in a layer using this type of filter.

For a given cell, the lateral inhibition is calculated based on the activity of nearby cells at distances away

indexed by a and . The parameters ¢ and ¢ are variables used to modify the amount and extent of
inhibition, respectively.

invariant object recognition, Wallis and Rolls
developed a simulation which implements many of
the ideas just described, and is consistent with and
based on much of the neurophysiology summarized
above. The network simulated, visnet, can perform
object, including face, recognition in a biologically
plausible way, and after training shows for example
translation and view invariance (Wallis ef al., 1993).
The architecture and operation of this neural network
are described next, for the simulation helps to define
and test some of the hypotheses presented in Section
2 on how the cerebral cortex could perform invariant
object recognition. We note that the most crucial part
of the proposal is the use of the trace learning rule,
described in Section 3.2.

3.1. VisNet Architecture
3.1.1. Connectivity

In the four-layer network, the successive layers
correspond approximately to V2, V4, the posterior
temporal cortex, and the anterior temporal cortex.
The network is designed as a series of hierarchical,
convergent, competitive networks. The network is
constructed such that the convergence of information
from the most disparate parts of the network’s input

*As neurons at the edge of the network would otherwise
have fewer inputs the closer they are to the edge, in the
actual network, simulated edge effects were precluded by
wrapping the network into a toroid. This was performed by
arranging the connections so that the top of the network was
wrapped to the bottom, and the left to the right. This
wrapping happens at all four layers of the network, and in
the way an image on the “retina” is mapped to the input
filters. This solution has the advantage of making all of the
boundaries effectively invisible to the network. (This
procedure does not itself introduce problems into evaluation
of the network for the problems set, as many of the critical
comparisons in VisNet involve comparisons between a
network with the same architecture trained with the trace
rule, or with the Hebb rule, or not trained at all, as described
below.) In the real brain, such edge effects would be
'smoothed naturally by the transition of the locus of cellular
input from the fovea to the lower acuity periphery of the
visual field.

layer can potentially influence firing in a single
neuron in the final layer — see Fig. 3. This
corresponds to the scheme described by many
researchers (e.g. Van Essen ef al., 1992; Rolls, 1992b)
as present in the primate visual system — see Fig, 2.

The forward connections to a cell in one layer are
derived from a topologically related and confined
region of the preceding layer. The choice of whether
a connection between neurons in adjacent layers
exists or not, is based upon a gaussian distribution of
connection probabilities which roll off radially from
the focal point of connections for each neuron. In
practice, a minor extra constraint precludes the
repeated connection of any pair of cells. Each cell
receives 100 connections from a 32 x 32 grid of cells
in the preceding layer, initially with a 67%
probability that a connection comes from within four
cells of the distribution centre — although the
effective radius of convergence increases slightly
through the layers. Figure 3 shows the general
convergent network architecture used. Localization
and limitation of connectivity in the network is
intended to mimic cortical connectivity, partially
because of the clear retention of retinal topology
through regions of visual cortex. This architecture
also encourages the gradual combination of features
from layer to layer which has relevance to the binding
problem, as described below*.

3.1.2. Calculation of Neuronal Firing

The activation & of each neuron in the plane of
32 x 32 neurons in each layer was calculated in the
conventional way as the synaptically weighted sum of
the input firings connected to each neuron,

h = Zx;w, (1)

where x; is the firing rate of the jth input through the
Jjth synaptic weight w; to the neuron, and the sum is
over all the inputs (indexed by j) connected to a
neuron from the neurons in the preceding layer.
The next two steps implement short-range lateral
inhibition between the neurons (performed in order
to allow the neurons within a neighbourhood to
reflect the strongest spatial information within that
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neighbourhood, and not to be suppressed by perhaps
more active but distant neurons), and soft compe-
tition. The lateral inhibition helps to ensure that all
parts of the stimuli presented are represented by the
neurons in each layer. In the simulations, a local
inhibitory function was applied to each neuron and
its neighbouring cells, in a similar way to that used
by von der Malsburg (1973). The local lateral
inhibition was simulated via a linear local contrast-
enhancing filter, consisting of a positive central spike
surrounded by a negative gaussian field, the general
shape and formula for which are given in Fig. 4. (As
with the network connectivity, the inhibition acts
toroidally.) The choice of parameters describing the
mask 6 = 10 and ¢ = 1 meant that inhibition was
largely restricted to the nearest neuronal neighbours.
(In recent experiments by Milward and Rolls, using
the sigmoid activation function, the range of the
lateral inhibition was extended by increasing the
value of ¢ to 1.44, and this improved the
performance of VisNet.)) The competition then
applied was not winner-take-all (with only one
neuron left active after the competition), but instead
was graded, to produce a soft competitive network.
This soft competition can be advantageous in the way
neurons are allocated to stimuli (Bennett, 1990) and,
in particular, has the important advantage of leading
to distributed representations. After the competition,
the average neuronal firing was scaled to a constant
average value, to ensure that learning was similar for
every presentation of a stimulus. The second step
was, unless otherwise stated, implemented by raising
the activity r of a neuron after the lateral inhibition
to a power p greater than 1, and then rescaling the
firing rates, to maintain the average firing rate of the
neurons constant, i.e.

y=r (i) @)

where i indexes through the neurons in a layer, and
would be represented in the brain by a shunting effect
of inhibitory feedback neurons. In some simulations,
an alternative activation function, a sigmoid, was
used, as a check that the precise form of the
competition was not crucial.

3.1.3. Network Input

In order that the results of the simulation might be
made particularly relevant to understanding process-
ing in higher cortical visual areas, the inputs to layer
1 come from a separate input layer which provides an
approximation to the encoding found in visual area
1 (V1) of the primate visual system. Several
unsupervised neural models have been successful in
learning to produce cells with the centre-surround
response properties of cells in the lateral geniculate
nucleus, and the oriented edge and bar sensitive
simple cells of V1 (von der Malsburg, 1973; Nass and
Cooper, 1975; Linsker, 1986). VisNet does not
attempt to train the response properties of simple

*We warmly thank Professor R. Watt, of Stirling
University, for assistance with the implementation of this
filter scheme.

cells, but instead starts with a fixed feature extraction
level, as have some other researchers in the field
(Hummel and Biederman, 1992; Buhmann ef al.,
1991; Fukushima, 1980), with the intention of
simulating the more complicated response properties
of cells between V1 and the inferior temporal cortex
IT).

The response characteristics of neurons in the input
layer are therefore provided by a series of spatially
tuned filters with image contrast sensitivities chosen
to accord with the general tuning profiles observed in
the simple cells of V1. Currently, only even-symmet-
ric (bar-detecting) filter shapes are used. The precise
filter shapes were computed by weighting the
difference of two Gaussians by a third orthogonal
Gaussian according to the following:

y
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where fis the filter spatial frequency (four frequencies
over four octaves in the range 0.0625-0.5 pixels '), 8
is the filter orientation (0-135° over four orien-
tations), and p is the sign of the filter, i.e. + 1*. Cells
of layer 1 receive a topologically consistent, localized,
random selection of the filter responses in the input
layer, under the constraint that each cell samples
every filter spatial frequency and receives a constant
number (272 unless otherwise specified) of inputs.
Oriented difference of gaussian filters were chosen in
preference to the often used Gabor filter on the
grounds of their better fit to available neurophysio-
logical data including the zero DC response (Hawken
and Parker, 1987; Wallis, 1994). (Any zero DC filter
can, of course, produce a negative as well as positive
output, which would mean that this simulation of a
simple cell would permit negative as well as positive
firing. In contrast to some other models, the response
of each filter is zero thresholded and the negative
results used to form a separate anti-phase input by
other neurons to the network.) The filter outputs also
are normalized across scales to compensate for the
low frequency bias in the images of natural objects.
Figure 5 shows pictorially the general filter sampling
paradigm.

3.2, The Trace Learning Rule

The learning rule implemented in the simulations
utilizes the spatio-temporal constraints placed upon
the behaviour of “‘real-world” objects to learn about
natural object transformations. By presenting con-
sistent sequences of transforming objects the cells in
the network can learn to respond to the same object
through all of its naturally transformed states, as
described by Foldiak (1991), Rolls (1992b, 1994,
1995b, 1996b) and Wallis (1996b). The learning rule
incorporates a decaying trace of previous cell activity
and is henceforth referred to simply as the “trace”
learning rule. The learning paradigm described here
is intended in principle to enable learning of any of
the transforms tolerated by inferior temporal cortex
neurons (see above).
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Fig. 5. The input filters for VisNet. There are four spatial frequencies and four orientations of the oriented

difference of Gaussian — “‘bar detecting” — filters. Here, each square represents the retinal image

presented to the network after being filtered by an oriented difference of Gaussian filter of the appropriate

orientation, sign and frequency. The circles represent the consistent retinotopic coordinates used to

provide input to a layer one cell. The filters double in spatial frequency towards the reader. From left

to right, the orientation tuning increases from 0 in steps of four, with segregated pairs of positive (P) and
negative (N) filter responses.

To clarify the reasoning behind this point, consider
the situation in which a single neuron is strongly
activated by a stimulus forming part of a real world
object. The trace of this neuron’s activation will then
gradually decay over a time period in the order of
0.5 sec, say. If, during this limited time window, the
net is presented with a transformed version of the
original stimulus then not only will the initially active
afferent synapses modify onto the neuron, but so,
also, will the synapses activated by the transformed
version of this stimulus. In this way, the cell will learn
to respond to either appearance of the original
stimulus. Making such associations works in practice
because it is very likely that within short time periods
different aspects of the same object will be being
inspected. The cell will not, however, tend to make
spurious links across stimuli that are part of different
objects because of the unlikelihood in the real world
of one object consistently following another.

The trace update rule used in these simulations is
equivalent to both Foldiak’s (1991) and to the earlier
rule of Sutton and Barto (1981), and can be
summarized as follows:

5wij = k};i(t)xj' (4)
where

P ==+t (5)

and x; is the jth input to the neuron, y; is the output
of the ith neuron, w; is the jth weight on the ith
neuron, y governs the relative influence of the trace
and the new input (typically 0.4-0.6), and j®
represents the value of the ith cell’s memory trace at
time ¢. (The optimal value for u varies with
presentation sequence length.) .

To bound the growth of each cell’s dendritic weight
vector, the length of the weight vector of each neuron
is explicitly normalized, a method in standard use for
competitive nets (see Hertz e al., 1991; Rolls and
Treves, 1997). An alternative, more biologically
relevant implementation, using a local weight
bounding operation which utilizes a form of
heterosynaptic long-term depression (see Brown

et al., 1990; Rolls, 1996a), has in part been explored
using a rule similar to the Oja rule (see Oja, 1982,
Hertz et al., 1991; Rolls and Treves, 1997). The rule
implemented for such tests was

owy = kiO(x; — wy) . (4a)
This rule tends to keep the sum of the synaptic
weights on each dendrite constant when the average
firing rate of the inputs on the x lines is kept constant,
as would be the case in the brain if the x inputs came
from a population of cells with negative feedback
operating through inhibitory feedback neurons (Rolls
and Treves, 1997). This modified rule that performs
automatic weight scaling implies long-term poten-
tiation if x; is greater than its average, and
heterosynaptic long-term depression if x; is below its
average, for a given strong post-synaptic activation
(Rolls, 1996a; Rolls and Treves, 1997).

To train the network to produce a translation
invariant representation, one stimulus was placed
successively in a sequence of (e.g. nine) positions
across the input, then the next stimulus was placed
successively in the same sequence of positions across
the input, and so on through the set of stimuli. The
idea was to enable the network to learn whatever was
common at each stage of the network about a
stimulus shown in different positions. To train on
view invariance, different views of the same object
were shown in succession, then different views of the
next object were shown in succession, and so on.

3.2.1. Measurement of Network Performance

A neuron can be said to have learnt an invariant
representation if it discriminates one set of stimuli
from another set, across all transformations. For
example, a neuron’s response is translation invariant
if its response to one set of stimuli is consistently
higher than to all other stimuli irrespective of
presentation location. Note that we state “set of
stimuli” since neurons in inferior temporal cortex are
not generally selective for a single stimulus but rather
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Fig. 6. The three stimuli used in the first set of experiments
on translation invariance by VisNet.

a sub-population of stimuli (Baylis et al., 1985; Rolls
and Tovee, 1995a; Abbott ef al., 1996).

Essentially, any measure should ensure low
variance in neural response across the transformation
(transform invariance) and high variance across
stimuli (stimulus selectivity). One way to assess this
was to run a two-way ANOVA on the set of
responses of each cell, with one factor being stimulus
type, and the other the position of the stimulus on the
“retina”. A high F ratio for stimulus type (F)), and
a low F ratio for stimulus position (£,) would imply
a position invariant representation of the stimuli. The
“discrimination factor” of a particular cell was then
gauged as the ratio F/F, This measure was
supplemented in the simulations by a very analogous
“relative amount of information™ metric described in
the Appendix, and by information measures identical
1o those used for real neurons by Tovee et al. (1994).

3.3. Translation Invariance with Simple Stimuli
‘GT”, ‘GL” and [13 + ”

A first test of the network used a set of three stimuli
(“T”, “L” and “ + 7 shapes) based upon probable
three-dimensional edge cues. [ Chakravarty (1979)
describes the application of these shapes as cues for
the three-dimensional interpretation of edge junc-
tions, and Tanaka er al. (1991) have demonstrated
the existence of neurons responsive to such stimuli in
the inferior temporal visual cortex.] The actual
stimuli used are shown in Fig. 6. These stimul were
chosen partly because of their significance as form
cues, but on a more practical note because they each
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contain the same fundamental features — namely a
horizontal bar conjoined with a vertical bar. In
practice, this means that the oriented simple cell
filters of the input layer cannot distinguish these
stimuli on the basis of which features are present. As
a consequence of this, the representation of the
stimuli received by the network is non-orthogonal
and hence considerably more difficult to classify than
was the case in earlier experiments involving the trace
rule by Foldiak (1991). The expectation is that layer
1 neurons will learn to respond to spatially selective
combinations of the basic features thereby helping to
distinguish these non-orthogonal stimuli. The trajec-
tory followed by each stimulus consists of sweeping
left to right horizontally across three locations in the
top row, and then sweeping back, right to left across
the middle row, before returning to the right hand
side across the bottom row — tracing out a
“Z”-shaped path across the retina. Unless stated
otherwise, this pattern of nine presentation locations
was adopted in all image translation experiments.
Training was carried out by permutatively presenting
all stimuli in each location a total of 800 times unless
otherwise stated. The sequence described above was
followed for each stimulus, with the sequence start
point and direction of sweep being chosen at random.

It was found following training with the trace rule
that some layer 4 neurons responded to one of the
stimuli whatever its location, with only small
responses to the other stimuli (see examples in Fig. 7).
These invariant responses were built up gradually
over the layers of the network, with neurons in layers
2 and 3 starting to show some translation invariance
(see examples in Fig. 8), which was necessarily limited
to part of the ‘‘retina” because the convergence
allowed by the architecture did not allow full
translation invariance at these carly stages (see
Fig. 3). In layer 1, the neurons typically responded to
inputs from an even more limited area of the
“retina’”’, but combined inputs appropriately from the
different spatial filters in a region. (For example, after
training, neurons in layer 1 frequently came to
respond to inputs from spatial frequency filters of
similar orientations but different spatial frequencies
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Fig. 7. Response profiles for two fourth layer neurons. The discrimination factors were 4.07 and 3.62.
The firing rates for each of the three stimuli (L, Tand + ) at each of the nine training locations are shown.
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Fig. 8. Response profiles for a neuron in layer 2 (left, discrimination factor 1.34) and for a neuron in
layer 3 (discrimination factor 1.64).

over a small retinal area, such as might be produced
by an oriented edge at one position on the “retina’.)
The gradual emergence from layer to layer of the
network of translation invariance over the whole
“retina” is documented in Fig. 9, which shows the
discrimination factor for the 30 most invariant cells
in each of the four layers of the network. The values
of discrimination factor in the range 2-5 reached by
neurons in layer 4 indicate excellent translation
invariant discrimination between the patterns, as can
be seen by comparison with the values of the
discrimination factor of the neurons shown in Figs 7
and 8. It is useful to note that because VisNet
operates as a competitive network, it is expected, and
desired, that only some of the neurons provide a good
representation of the input stimuli: the other neurons
remain unallocated, available for further patterns to
be learned later.

It was next shown that use of the trace learning rule
was essential for the invariant representations found
in single neurons in layer 4 of VisNet. This was shown
by testing the network under two new conditions.
Firstly, the performance of the network was

Discrimaination Factor

measured before learning occurs, that is with its
initially random connection weights. Second, the
network was trained with # in the trace rule set to 0,
which causes learning to proceed in a traceless,
standard Hebbian fashion. Figure 10 shows the
results under the three conditions. The results show
that the trace rule is the decisive factor in establishing
the invariant responses in the layer four neurons. It
is interesting to note that the Hebbian learning results
are actually worse than those achieved by chance in
the untrained net. In general, with Hebbian learning,
the most highly discriminating cells have discrimi-
nation factors which are barely higher than 1. This
value of discrimination factor corresponds to the case
in which a cell responds to only one stimulus and in
only one location. The poor performance with the
Hebb rule comes as a direct consequence of the
presentation paradigm being employed. If we
consider an image as representing a vector in
multidimensional space, a particular image in the top
left-hand corner of the input retina will tend to look
more like any other image in that same location than
the same image presented elsewhere. A simple

1‘6 1‘3 lb

~
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Fig. 9. The network discrimination factor for each of the 30 best cells in each of layers 1-4 (L1 etc) are
shown. Training was with the trace learning rule, with three stimuli, +, T and L, at nine different
locations The means and standard errors of five separate runs of the network are shown.
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Fig. 10. Comparison of network discrimination when trained with the trace learning rule, with a Hebb

rule (No trace), and when not trained (Random) on three stimuli, + , T and L, at nine different locations.

The means and standard errors of five separate runs of the network are shown. The values for the 30
most discriminating cells in layer 4 are shown,

competitive network using just Hebbian learning will
thus tend to categorize images by where they are
rather than what they are — the exact opposite of
what the net was intended to learn. This result is
important, since it indicates that a small memory
trace acting in the standard Hebbian learning
paradigm can alter radically the normal vector
averaging, image classification, performed by a
Hebbian-based competitive network.

A property of competitive networks is that they
should allocate at least some neurons to each input
stimulus, so that the output of the competitive net
provides information about all input stimuli (see e.g.
Hertz et al., 1991; Rolls and Treves, 1997). It was
confirmed that VisNet did allocate neurons to each of
the input stimuli on which it was trained with the
trace rule. (One simple way that this was shown was
by finding the preferred stimulus for each cell, and
adding its discrimination factor value to a total for
each stimulus. This measure in practice never varied
by more than a factor of 1.3: 1 for all stimuli.)

Although the global translation invariance
achieved by VisNet is a result of the trace rule
enabling neurons to set up invariant representations
over large shifts in the stimulus position (see
Figs 7,10), there is in addition some local generaliz-
ation to untrained locations near to trained locations,
which arises because the input filters illustrated in
Fig. 5 have, particularly for the low spatial frequency
filters, a significant receptive field size.

Having established that VisNet could learn
translation invariant representations, we next investi-
gated how two parameters of the network, the length
or time constant of the trace in the learning rule [set
by n in equation (5)], and the nonlinearity of the
activation function [set e.g. by p in equation (2)],
affected the performance of the network. (For these
investigations, the network performance is shown by
the median and interquartile range of the discrimi-
nation factor for the best 16 cells of the fourth layer
for each parameter value from a run with 800 training
trials. The network was again trained on the three
stimuli T, L and + , at each of nine locations placed

as before at horizontal, vertical coordinates on the
retina  — 30,30; — 30,0; 30,30; 30,0; 0,0; 30,0;
— 30, — 30; 0, — 30; and 30, — 30.)

The effects of varying the effective length of the
trace, controlled by the parameter n, with larger
values implementing a longer trace, are shown in
Fig. 11. It is shown that values of 0.6-0.8 are best for
training with the nine standard presentation lo-
cations. A large value of 5 will have the advantage of
allowing stimulus presentations far apart in the run
of nine locations to be associated together, but the
disadvantage that then there will be some spurious
association between stimuli, in that when a new
stimulus is chosen during training, for its first few
presentations, some trace activity will persist from the
previous stimulus. (No explicit trace reset when a new
stimulus is presented is used in VisNet, to simulate a
“worst case” condition. It is, of course, possible that
in the brain, if the eyes are shifted to a new object,
there is some resetting produced by factors such as
saccadic suppression and masking of previous
neuronal activity produced by what might be a
completely new visual input produced when the eyes
saccade to a new object. Such resetting would serve
to improve the performance of the network.) The
optimal length of the trace for the reason just
discussed is likely to depend on the number of
presentations of each stimulus in any one run, before
a different stimulus is shown. This is confirmed in
Fig. 12, which shows that a smaller value of #,
0.4-0.6, is better if the run length is 5, with each
stimulus being shown in five different locations before
the next stimulus is chosen. In fact, the way that #
operates in equation (5) implies exponential decay of
the trace, and this has been shown to be close to
optimal when the system must operate with different
run lengths for any one stimulus before another
stimulus is shown (Wallis, 1996a). It is also the case
that the optimal value of # may be different for each
layer of VisNet, at least for translation invariance
with steady progression across the retina. This arises
because the neurons in each layer have different
effective receptive field sizes, so that each layer’s
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Fig. 11. The effects of varying the effective length of the trace, controlled by the parameter 4, with larger
values implementing a longer trace, on the performance of VisNet trained with T, L and + stimuli in
each of nine different locations.

neurons are exposed to different proportions of the
full sweep of a particular stimulus across the retina.
This indicates that the optimal value of # will grow
through the layers, with training on this type of
problem. In fact, the receptive fields of neurons in
layer 1 of VisNet are so small that there is only little
scope for invariance learning in layer 1, and in
practice it is found that VisNet operates well with
only Hebbian learning in layer 1 (n set to 0), allowing
neurons in layer 1 to learn to respond to
combinations of simultaneously active filter inputs,
without encouraging them to learn invariant rep-
resentations. In accordance with this, # is set to 0 for
layer 1 for the simulations described here. Unless
otherwise stated, it was set to 0.6 for layers 2-4 of
VisNet.

The effect of altering the degree of non-linearity of
the activation function of the neurons, which controls
the strength of the competition between the neurons,
is shown in Fig. 13. High values of p in equation (2)
tend to make the network winner-take-all, with one
neuron left active after the competition, while lower
values (e.g. 2) tend to produce a much more

12

1on Factor

iscrimination

D

distributed representation, with many neurons left
active after the “soft” competition. It is shown in
Fig. 13 that a value of 2 for the non-linearity power
p was optimal for layers 2-4. To .provide a
quantitative measure of the sparseness of the
representation with which VisNet operated well, we
calculated a measure of the population sparseness as

@y =(Zy_ N rof NY/Zo 15 (r2/ N) (©6)

where r, is the firing rate of the nth neuron in the
population of ¥ neurons in a layer. This population
sparseness has a maximum value of 1.0 if all the
neurons are equally active when a stimulus is shown,
and a minimum value of 1/N if only one neuron in
the population of N neurons is active, that is if there
is one winner. The value for N was 1024 neurons per
layer for the simulations described, so that a value of
0.001 would correspond to only one neuron active in
a layer. With a value for p of 2 for layers 24, typical
values for a, were 0.1-0.3.

As the inputs to layer | of VisNet were from spatial
frequency filters that were simply convolved with the
image, and had no mutual inhibition, a greater degree

0.8

0.6

0.4

n

Fig. 12. The effects of varying the effective length of the trace, controlled by the parameter 5, on the
performance of VisNet trained with T, L and + stimuli in each of five different locations.
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Fig. 13. The effect of altering the degree of non-linearity of the activation function of the neurons, which
controls the strength of the competition between the neurons.

of non-linearity was required in the competition
between the neurons of layer 1 to bring down the
sparseness of the representation in layer 1 to
appropriate values. The non-linearity power p of
equation (2) used for layer 1 was typically 6, and this
produced a sparseness ¢, which was typically in the
region of 0.02 for layer 1.

To ensure that there was no special dependence on
the type of activation function and competition
implemented between the neurons, some runs were
performed with another activation function with a
physiologically plausible shape, a sigmoid:

1L+ e~ ) )

where o is a threshold, § is the slope, and x is the
activation. To apply this activation function, a was
set to the 98th percentile of the activations in that
layer. (This procedure results in 98% of the firing
rates being below the mid-point of the sigmoid, 0.5.)
The slope § was set to a fixed value for each layer
which resulted in approximately 4% of the firing rates

lying within or above the linear part of the sigmoid.
Comparably good performance to that already
described was obtained with the use of this sigmoid
activation function.

The VisNet simulations just described with three
simple stimuli provided a useful test case for
performance of the network. We next tested whether
the network could operate with much more complex,
real biological, stimuli, faces, which in many cases
were the same as those used as stimuli in the
neurophysiological experiments on the temporal
cortical visual areas described above; and whether the
architecture could learn other types of invariance,
such as view invariance.

3.4. Translation Invariance with Faces

VisNet was trained with seven faces each in nine
locations on the retina. The set of face images used
is shown in Fig. 14. In practice, to equalize
luminance, the DC component of the images was.

Fig. 14. The seven faces used as stimuli in the face translation experiment.
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Fig. 15. The response profiles for two neurons in the fourth layer after training with seven faces at each
of nine locations. Their discrimination factors were 2.64 and 2.10.

removed. In addition, so as to minimize the effect of
cast shadows, an oval Hamming window was applied
to the face image which also served to remove any
hard edges of the image relative to the plain
background upon which they were set. The results are
shown in Figs 15-17. The network produced
neurons with high discrimination factors, and this
only occurred if it was trained with the trace rule
(Fig. 17). A difference from the previous simulations
was that with more stimuli, the neurons did not
typically respond to only one stimulus independently
of location, but instead a more distributed represen-
tation was found, as illustrated in the examples of
layer 4 neurons shown in Fig. 15.

To check that information was present in the type
of distributed representation found in layer 4 that
could be decoded easily from many neurons to
indicate which stimulus was presented independently
of location, a fifth layer was added to the net which
fully sampled the fourth layer cells. This layer was in
turn trained in a supervised manner using gradient
descent (i.e. a delta rule, with one neuron in the fifth

1.5 .0.0-008606-6-0-0-0-0609-0-0
‘. ..-..': *®9-0 6 0 6-560 8- .- 0@

1 0-90-0-0-0-0-0-0-0-0-0-0-0-0-0-9-0-0-0-0-0-0-0-90-9-0-0-0-0-9 ]

Discrimaination Factor
N

layer for each stimulus). (The fifth layer was intended
purely as a tool for analysis and for decoding the
representation found in the fourth layer of the
network. If information about the identity of
individual stimuli had been irrevocably lost by the
representation built in layer four, due to the
consistent pairing of stimuli by the neurons, then
layer 5 should not be able to extract information
about individual stimulus identity.) Fig. 18 shows the
classification performance of the fifth layer for nets
trained with the Hebb and trace rules as well as for
the untrained net. Performance on every stimulus was
perfect for nets trained with the trace rule, confirming
that information about stimulus identity was present
in the representation built by the trace rule by layer
4. In contrast, the performance, although quite good
because of the power of the supervised learning used
in layer 5, was not perfect for the Hebb trained net
(84%), or for the untrained net (92%). Further
evidence that all the stimuli were well represented by
layer 4 was that taking the preferred stimulus for each
cell, and adding its discrimination factor value to a

L4

’.Q§§‘*7+ L3

ff.-’"’i'i- - ® e

.0 009

28 25 22 19

16 13 10 7 4 1

Cell Rank

Fig. 16. The network performance shown by that of the 30 most highly discriminating cells for each of
the four layers of the network, averaged over five runs of the network. The training set was seven faces
at each of nine locations.
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Fig. 17. The network performance shown by that of the 30 most highly discriminating cells in the fourth
layer for the three training regimes, averaged over five runs of the network. The training set was seven
faces at each of nine locations.

total for each stimulus, produced high discrimination
scores for every stimulus when the net was trained
with seven faces at each of nine locations.

3.5. View Invariance

To investigate how well VisNet might solve other
types of invariance, the network was trained on the
problem of three-dimensional stimulus rotation,
which produces non-isomorphic transforms, to
determine whether the network can build a
view-invariant representation of stimuli. The trace
rule learning paradigm should, in conjunction with
the architecture we describe here, prove capable of
learning any of the transforms tolerated by IT
neurons, so long as each stimulus is presented in its
different transformed states close together in time.
Seven different views of three different faces
presented centrally on the retina were used. The
images used are shown in Fig. 19. The faces were
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Fig. 18. The stimulus classification achieved for a fifth layer
trained with a deita rule to classify faces based on the
representation set up by VisNet in layer 4 when trained with
the trace or Hebb rule, or not trained (Random). There were
seven faces each shown in nine different locations.

again smoothed at the edges to erase the harsh image
boundaries, and the DC term was removed. To use
the capacity of the network fully, given that the
images were presented only centrally, the images
presented were twice as large as those used in the
translation experiments. This also permitted the net
to discern finer feature detail in the individual faces.
During the 800 epochs of learning, each stimulus was
chosen at random, and a sequence of preset views of
it was shown, sweeping the face either clockwise or
counter-clockwise.

The net was able to solve the view invariance
problem. Examples of invariant layer four neuron
response profiles are shown in Fig. 20. One difference
from the results of the translation invariance
experiments was that some cells in the first layer
showed limited tolerance to shifts in viewing angle.
This is to be expected since slightly rotated views of
a face will share many of the same basic features in
the same location, which results in the observed
generalization. Although true generalization across
all views was not achieved until higher layers, the
contribution of local generalization provided by the
cells in layer one for this problem meant that some
cells in layer three already exhibit view invariance.
This result is also in part due to the fact that the
images, though twice as large as in the previous
experiment, did not extend as far out across the retina
as in the translation invariance experiment, allowing
convergence of the information relevant to solving
the problem to occur earlier in the hierarchy.
Although view invariance was partially solved by
layer three of the network, a further improvement
was found with layer four neurons (see Fig. 21, where
there are more cells with high discrimination factors
and flatter response profiles than those observed in
layer three). Figure 22 shows that only the net trained
with the trace rule can solve the problem, and that the
nets trained with the Hebb rule or untrained (random
connectivity) perform equally poorly. Because there
were fewer stimuli (seven) in a view set than in a
translation invariance set, it was found that the
optimal value of the trace parameter, 7, was a little
lower than the 0.6 found to be optimal for nine
locations.



Invariant Face and Object Recognition 185

Fig. 19. The three faces each with seven different views used as the stimuli in the view invariance learning
experiment. The goal of the net was to learn to recognize each face independently of view.

3.6. Size Invariance

VisNet also has been trained successfully to
produce size invariant representations. In one
experiment, by M. Elliffe and Rolls, VisNet produced
perfect discrimination of seven faces each trained
with seven different sizes (from 1/4 to 7/4 of the
normal size).

3.7. Translation Invariance with Seven Faces and 49
Training Locations

In recent simulations, Rolls and T. Milward have
extended the analysis of VisNet to investigate
whether it can still form invariant responses when
there are many more locations over which it must
show translation invariant representations of objects
such as faces. In one such investigation, Rolls’and
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Milward trained VisNet on seven faces shown at each
of 49 training locations. Each face was a
32 x 32 pixel image with 256 grey scale values. The
image was presented in each of 49 locations in a
64 x 64 part of the retina during training. With a
value of # = 0.6, the trace effect remaining from a
previous presentation of a stimulus decays to a small
value after the stimulus image has been presented in
seven different retinal locations. Therefore, they did
not present the 49 locations for any one image during
training in a standard serial sequence, but instead
used a set of short-range movements across the
retina, followed by a longer jump. The idea here is
that during inspection of an object during learning,
there is a set of small eye movements, followed by a
longer saccade to another part of the object, which
occurs several times. In detail, the sequence of
presentations of any image consisted of seven small
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Fig. 20. Response profiles for cells in the layer 4 of VisNet when trained on three faces each with seven
different views. The discrimination factors of the cells were 11.12 and 12.40.
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Fig. 21. The discrimination factors for the 30 best cells in each of the four layers L1-L4 of VisNet trained
on three faces each with seven views. The means and standard errors based on five runs are shown.

movements to adjacent testing locations (which were
arranged in a pattern which consisted of seven rows
of seven points in the 64 x 64 grid), followed by a
random long jump to another training location to
start on another set of small movements. Each of the
49 locations was visited once per training epoch for
each image. 2000 such training trials were run for
each layer. During testing, each face was presented at
the 49 training locations, and the responses of the
cells in layer 4 were measured to determine whether
they showed responses which displayed selectivity for
one of the faces but invariance with respect to where
that face was shown. Trace reset between stimuli was
used for these and later simulation runs.

The results of training VisNet on seven faces at 49
locations are shown in Fig. 23. The discrimination
factor for the 30 most translation invariant cells in
layer 4 when VisNet was trained with the trace rule,
or was untrained (random weights) as a control, are
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shown. The results from one of the cells are shown
in Fig. 24. This cell responded to one of the faces only
at all locations, and not to any of the other faces at
any location. Figure 25 shows the results from the
same simulation expressed as the amount of
information in bits about which of the seven faces
had been shown (calculated across all 49 training
locations) represented by the 30 most selective cells.
(The application of information theory to analyse
translation invariant neuronal responses has been
described by Tovee er al., 1994.) The results are
shown separately for VisNet trained with the trace
rule, and left untrained as a control with random
weights. The network could also generalize to other
locations at which it was not trained, as shown in
Fig. 26, which shows performance when tested at all
1024 locations after training at 49 locations. These
results show that this architecture can still perform
reasonably at the very difficult task of learning
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Fig. 22. The discrimination factors for the 30 best cells in layer 4 of VisNet with three faces each with
seven views. The means and standard errors based on five runs are shown when training was with the
Trace or Hebb rule, or the network was left untrained with its random initial connectivity.
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Fig. 23. The results of training VisNet on seven faces at 49 locations. The discrimination factor for the
30 most translation invariant cells in layer 4 when VisNet was trained with the trace rule, or was untrained
(random weights) as a control, are shown.

translation invariant representations over 49 training
locations of seven different complex images, faces. To
enable it to learn, the eyes had effectively to jump to
different parts of the object several times, so that the
trace rule could make associations not just over short
distances across the retina, but also (using its higher
layers) over longer distances across the retina. The
network also can perform reasonably at the difficult
task of learning seven faces when trained with every
face shown in every one of 1024 locations (Fig. 27).

4. COMPARISON OF DIFFERENT
APPROACHES TO INVARIANT OBJECT
RECOGNITION

The findings described in Section 3 show that the
proposed trace learning mechanism and neural
architecture can produce cells with responses selective
for stimulus type with considerable position, view and
size invariance. We now compare to other approaches
the proposal made here and by Rolls (1992b,
1994,1995, 1996) and investigated by simulation using
VisNet, about how the visual cortical areas may solve
the problem of forming invariant representations.

The trace rule is local and hence biologically
plausible, in that the signals required to alter the
synaptic strength during learning are the presynaptic
firing and the postsynaptic activation, both available
locally at the synapse. The use of such a learning rule

sets this proposal apart from most other proposals
for how invariant representations might be formed.
The system also operates by self-organizing competi-
tive learning, which is also biologically plausible, in
that the learning can be driven by the actual inputs
received with no external teacher needed, and in that
lateral inhibition, which implements competition, is a
well-known property of cortical architecture. Other
models typically have combined various less attrac-
tive elements such as supervised or non-local learning
(Poggio and Edelman, 1990; Fukushima, 1980; Mel,
1996), extremely idealized or simplified stimuli
(Foldiak, 1991; Hinton, 1981), prohibitive object by
object matching processes (Olhausen et al., 1993;
Buhmann et al., 1990); or non-localized connectivity
(Hummel and Biederman, 1992). On the other hand,
some of these models have some advantages over the
model described here. For example, the model of
Olhausen er al. (1993) more explicitly addresses the
issue of locating and attending to objects throughout
the visual field. The model described here only
addresses object recognition within the high acuity
centre of the visual field, and would require some
other mechanism for locating and fixating stimuli. It
is possible that in the brain this process is not
performed by the ventral visual system, but is instead
performed by the dorsal visual system. Another issue
about the current simulation, VisNet, is that it has
only been trained with relatively few stimuli. The
models of Mel (1996) and Fukushima (1980) have e.g.
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been successfully trained on much larger data sets.
However, in work in progress, VisNet has been
successfully trained to 96% accuracy on a set of 100
hand-written digits (Wallis, 1994; Wallis, Rolls and
Milward, in preparation), and other investigations
using the trace rule have shown better categorization
performance than Fukushima’s NeoCognitron, and
better performance than the delta rule on a
cross-validation test (Wallis, 1996b).

One important aspect of any model of invariant
shape processing is that it should address the feature
binding problem. The essence of the problem is that
the local spatial arrangements of features should be
conserved, but the system must respond to these local
spatial arrangements (which together might define an
object) independently of where they are. Real
neurons do solve the problem, in that neurons
responsive to faces (Perrett et al., 1982, 1992), or
objects (Tanaka et al., 1991) respond less when the
features are jumbled. Models which throw away the
relative spatial arrangement of features so as to
achieve translation invariance will run into the
problem of false “recognition” of stimuli in which the
features have been rearranged. This is certainly true
for models which attempt to learn invariance in one
stage (Mel, 1996; Cavanagh, 1978). For example, in
a recent paper, Mel (1996) records that in his model
the cells “‘recognize” stimuli as the original configur-
ations even when the features are jumbled. An active
dynamic linking of features is proposed by von der
Malsburg (1981, 1990) and von der Malsburg and
Schneider (1986) as one solution to this problem. The

solution proposed by Rolls 1992b), 1994),1995, 1996
and incorporated into the network described here, is
that competitive learning should allow neurons to
learn to respond to combinations of their inputs.
Given that their inputs are restricted spatially within
the network, only low-order combinations of
spatially arranged features or inputs are learned by
each neuron. The suggestion is that with the
redundancy present in the real world (i.e. the world
does not consist of random arrangements of pixels,
but instead has regularities such as edges and
combinations of edges), a multilevel architecture
operating with the same competitive scheme repeated
at each level, can learn sufficient about the world to
represent its local spatial properties, in such a way
that rearrangements of the features will not lead to
the same response. The multilevel architecture helps
in this process, by enabling only short range (in terms
of connection space) spatial arrangements to be
learned at any one stage, even though by higher layers
of the network these may represent combinations of
features present over considerable parts of the input
layer.

Part of the reason for simulating the network
described here was to determine whether invariant
representations which retain information about the
local spatial arrangement of features can be learned
with real images, provided as examples of the real
statistics present in the world. The results of the
simulation do in fact support this proposal. For
example, the network was able to discriminate the
“T”, “L” and *“+ " stimuli, which, after all, are
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Fig. 24. Response for a cell in layer 4 of VisNet when trained on seven faces in each of 49 locations.
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Fig. 25. The results from the same simulation as that shown in Fig. 23 expressed as the average amount

of information in bits about which of the seven faces had been shown (calculated across all 49 training

locations) represented by each of the 30 most selective cells. The results are shown sepatately for VisNet
trained with the trace rule, and left untrained as a control with random weights.

merely rearrangements of two bar features. The
whole spirit of this proposal is very much in line with
the discrimination exhibited by temporal cortex
neurons to jumbled features.

Following the feature combination argument, a
view-dependent representation of objects suitable for
view-dependent processes such as behavioural re-
sponses to face expression and gesture would only be
available after several stages of processing. View-in-
dependent representations could then be formed by
the same type of computation, operating to combine
a limited set of views of objects. Indeed, neurons with
view-independent responses are present in the visual
system, and evidence suggests that they receive their
inputs from view-dependent neurons in the same
region {Hasselmo et al., 1989a; Perrett et al., 1987).
The plausibility of providing view-independent
recognition of objects by combining a set of different
views of objects has been proposed by a number of
investigators (Koenderink and van Doorn, 1979; Tarr
and Pinker, 1989; Biilthoff and Edelman, 1992), and
the network described here reveals how such a
representation might be set up, without recourse to
gradient descent algorithms used in other models
(Poggio and Edelman, 1990; Logothetis et al., 1994).
This solution to “object-based” representations is
very different from that traditionally proposed for
artificial vision systems, in which the coordinates in
three-dimensional space of descriptors of objects are

stored in a database, and general-purpose algorithms
operate on these to perform transforms such as
translation, rotation, and scale change in three-di-
mensional space (e.g. Marr, 1982). In the present,
much more limited but more biologically plausible
scheme, the representation would be suitable for
recognition of an object, and for linking associative
memories to objects as described in more detail by
Rolls (1994, 1995b). The solution to invariant
recognition proposed here would certainly need a
large number of neurons, but this is simply consistent
with the fact that perhaps one-half of the cortex of
non-human primates is devoted to vision. This, in
turn, leads to one aim of future work, namely to
discover the capacity of the system, in terms of the
number of objects or stimuli about which it could
learn. An important part of the hypothesis is that
invariant properties (e.g. feature combinations)
common to many objects can be learned in early
layers of the type of network described here, with
information about particular objects only being
represented in the last few layers. In line with this,
learning a representation of a new object can be fast
in a system already trained on other objects, for new
feature learning is unlikely to be required in
intermediate layers, so that it is only necessary to link
neurons in intermediate layers to new neurons in or
close to the final layer of the system.

One aspect of the model that has not been treated
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Fig. 26. The results of training VisNet on seven faces at 49 locations, and then testing at all 1024 locations.

The discrimination factor for the 30 most translation invariant cells in layer 4 when VisNet was trained

with the trace rule, or was untrained (random weights) as a control, are shown, This shows generalization
to locations at which the net was not trained.

in detail here is the optimal form of the trace rule, and
of the parameter 1 which controls the length of the
trace. In the real world, objects may typically be
viewed for 0.5-1 sec or more, with fixation durations
between saccades often 200-300 msec. A trace of up
to 1 sec in the real world might thus be satisfactory.
In the simulations described here, optimal values of
7 rose to produce a somewhat longer trace when each
object was shown for nine sequential time steps than
for five, as one might expect. A more detailed
approach to the optimal form of the trace rule is
being pursued (Wallis, 1996a). This has shown that
under a variety of probabilistic stimulus presentation
paradigms, the form of the trace rule used here, which
weights events with exponentially decreasing strength
the more distant they were in the past, is close to
optimal. Of course, this discussion assumes that there
is no active resetting of the visual system between the
inspection of different objects. If the eye movements
that accompany orientation to a new object are great,
then active suppression might be caused by the
complete change in the inputs reaching the visual
system, and transient feedback inhibition produced

* The consequences of using a trace rule for invariant
object recognition in humans is considered further by
Wallis, 1996c), who describes psychophysical results
consistent with the trace rule theory.

by the large visual input produced by the re-orien-
tation. Such a resetting between objects would help
the operation of the model described here, but the
model by no means needs this, and operates well if
the trace is of a fixed duration, in general just shorter
than the average time with which any object is
inspected.

Since the trace rule is seen to be capable of playing
a crucial role in the successful learning of invariant
responses to objects, it is worth considering the major
requirements of the learning that would be needed in
the primate visual system*. Firstly, it should be
possible to process several different images of an
object within the several hundred ms for which an
object may be viewed. This requirement appears to be
satisfied. Several hundred ms is sufficient time for the
visual stimulus to process several different images of
an object (Rolls and Tovee, 1994; Thorpe and Imbert,
1989; see section 1.5). Rapid primarily feedforward
processing is the computational style of competitive
neuronal networks, and the lateral interactions
necessary within each stage for the competition could
be implemented rapidly by integrate-and-fire neurons
(see Section 1.5 and Simmen et al., 1996). Secondly,
at least some learning should take place rapidly in the
cortex, based e.g. on several rapidly changing views
of an object seen one or twice. This requirement also
appears to be satisfied, in that learning of new
representations appears to occur with as little as
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Fig. 27. The results of training VisNet on seven faces at 1024 locations, and then testing at all 1024
locations. The discrimination factor for the 30 most translation invariant cells in layer 4 when VisNet was
trained with the trace rule, or was untrained (random weights) as a control, are shown.

several 1 sec presentations of new stimuli, such as
faces, that have never been seen before (see Section
1.4).

The third requirement for the learning paradigm
described here is that there should be some means
for previous cellular activity to affect learning in the
visual cortex. There are a number of possible
mechanisms for this. One is that a memory trace for
what has been seen in the last 300 msec appears to
be implemented by a mechanism as simple as
continued firing of inferior temporal neurons after
the stimulus has disappeared (see Rolls and Tovee,
1994; Rolls er al., 1994), probably as a result of
attractor states being set up by Hebb-modifiable
synapses being present between nearby cortical
pyramidal cells (see Rolls and Treves, 1997). This
mechanism would facilitate pairwise association
between successive images of the same object. A
second is that the binding period of glutamate to
the NMDA receptors (which may last for 100 or
more msec) and the entry of calcium to the
postsynaptic neuron might implement a trace rule
by producing a narrow time window over which the
average activity at each presynaptic terminal affects
learning (Rolls, 1992b; Rhodes, 1992). A third is
that chemicals such as nitric oxide may be released
during high neural activity and gradually decay in
concentration over a short time window during
which learning could be enhanced (Foldiak, 1991;
Montague et al., 1991). It is of interest that a trace

learning rule would be appropriate for the ventral
visual system, concerned with invariant form
representation, but not for the dorsal visual system,
in which motion and location are processed
(Ungerleider and Mishkin, 1982; Ungerleider and
Haxby, 1994). Indeed, the importance of having a
trace rule in the part of the visual system involved
in invariant object recognition, and the importance
of not having such a rule in the part of the visual
system involved in processing motion and location,
might be a fundamental reason for keeping these
two processing streams apart.
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APPENDIX
MEASURE OF NETWORK PERFORMANCE

In these experiments, a neuron’s response varies as a
function of location (or rotation) and stimulus type. A

simple measure for how invariant the response of a neuron
is to shifts in the location of a stimulus is simply the average
variance across location for each stimulus S;. If the response
profiles are flat, this variance should be low. In addition, the
distinctiveness of the response to any particular stimulus can
be gauged by the average variance in response across stimuli
S3. If the responses for each stimulus are very different and
allow easy discrimination between stimulus groups this
variance should be high. Any variance left unaccounted for
by $% and S} we can denote Si,. This variance acts as a
measure of the reliability of the other two variances
measured, and should be low if the response of the neuron
is consistent across location and stimulus.

An ideal, translation invariant, highly discriminating
neuron can thus be determined by seeking a high value for
the ratio between S3 and SZ, along with a generally low
value of SZ... Snedecor and Cochran (1989) describe how
to combine the error and each variance measure to derive
a measure of the “relative amount of information™ (RAI)
for each of the two factors. The formula normalizes the
measured variance with regard to the error, number of
stimuli and number of locations. By converting S and S}
into RAI measures, a direct quotient of the two corrected
variances can now be taken:

(Ns — 1)85 + Ns(N, — 1)S?
(N, — DSE+ Nu(Ns — 1)SE

Discrimination Factor = F¢

Ng Number of
stimulus classes

S3 Stimulus class
sample variance

S: = S&.r Sample error

N. Number of examples of
each stimulus
St Location sample variance

F¢ Correction factor

One attractive quality of this measure is that it evaluates
simply to the correction factor Fc in the case that a cell only
responds to one stimulus in one location. The formula for
F-1s not given, since in all of the cases studied here it is only
very slightly different from one, 0.975 < F¢ < 1.



