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A B S T R A C T

We describe the results of quantitative information theoretic analyses of neural encoding, particularly in

the primate visual, olfactory, taste, hippocampal, and orbitofrontal cortex. Most of the information turns

out to be encoded by the firing rates of the neurons, that is by the number of spikes in a short time

window. This has been shown to be a robust code, for the firing rate representations of different neurons

are close to independent for small populations of neurons. Moreover, the information can be read fast

from such encoding, in as little as 20 ms. In quantitative information theoretic studies, only a little

additional information is available in temporal encoding involving stimulus-dependent synchronization

of different neurons, or the timing of spikes within the spike train of a single neuron. Feature binding

appears to be solved by feature combination neurons rather than by temporal synchrony. The code is

sparse distributed, with the spike firing rate distributions close to exponential or gamma. A feature of the

code is that it can be read by neurons that take a synaptically weighted sum of their inputs. This dot

product decoding is biologically plausible. Understanding the neural code is fundamental to

understanding not only how the cortex represents, but also processes, information.
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1. Introduction

Because single neurons are the computing elements of the brain
and send the results of their processing by spiking activity to other
neurons, we can analyze brain processing by understanding what
is encoded by the neuronal firing at each stage of the brain (e.g.
each cortical area), and determining how what is encoded changes
from stage to stage. Each neuron responds differently to a set of
stimuli (with each neuron tuned differently to the members of the
set of stimuli), and it is this that allows different stimuli to be
represented. We can only address the richness of the representa-
tion therefore by understanding the differences in the responses of
different neurons, and the impact that this has on the amount of
information that is encoded. These issues can only be adequately
and directly addressed at the level of the activity of single neurons
and of populations of single neurons, and understanding at this
neuronal level (rather than at the level of thousands or millions of
neurons as revealed by functional neuroimaging) is essential for
understanding brain computation.

Information theory provides the means for quantifying how
much neurons communicate to other neurons, and thus provides a
quantitative approach to fundamental questions about informa-
tion processing in the brain. To investigate what in neuronal
activity carries information, one must compare the amounts of
information carried by different codes, that is different descrip-
tions of the same activity, to provide the answer. To investigate the
speed of information transmission, one must define and measure
information rates from neuronal responses. To investigate to what
extent the information provided by different cells is redundant or
instead independent, again one must measure amounts of
information in order to provide quantitative evidence. To compare
the information carried by the number of spikes, by the timing of
the spikes within the response of a single neuron, and by the
relative time of firing of different neurons reflecting for example
stimulus-dependent neuronal synchronization, information theo-
ry again provides a quantitative and well-founded basis for the
necessary comparisons. To compare the information carried by a
single neuron or a group of neurons with that reflected in the
behaviour of the human or animal, one must again use information
theory, as it provides a single measure which can be applied to the
measurement of the performance of all these different cases. In all
these situations, there is no quantitative and well-founded
alternative to information theory.

The overall aim of this paper is to describe the methods used for
the analysis of neuronal activity in primates and other mammals,
and to describe the main principles that have been discovered to
date about the representation of information in the primate brain.
Although there have been descriptions of some of the methods
used to analyze cortical population encoding (Rolls et al., 1997b;
Franco et al., 2004; Quian Quiroga and Panzeri, 2009), this is the
first paper we know that provides a comprehensive account of the
principles of information encoding by single neurons and
populations of neurons in the mammalian and particularly primate
cortex, together with the methods used to make these discoveries.
We focus on work on the primate to make the findings very
relevant to understanding neuronal encoding in the human brain;
because primates can be trained to maintain visual fixation and
attention in a way that allows reliable and repeated presentation of
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stimuli, which is essential for information theoretic analysis; and
because in primates it has been possible to analyze neuronal
activity in connected brain areas in order to understand the
difference in the representation at different stages of cortical
processing, and in different sensory pathways (Rolls, 2008).

This paper first summarizes information theory used in the
analysis of the responses of neurons in the primate brain.
Information theory, developed by Shannon (1948), is presented
formally elsewhere (Cover and Thomas, 1991; Hamming, 1990),
and further descriptions of its use in the analysis of neuronal firing
are provided by Rolls (2008), Quian Quiroga and Panzeri (2009)
and Rieke et al. (1997). In this paper we focus on its use for the
analysis of neuronal activity in primate brains. One reason is that
we are especially interested in situations in which large numbers
of neurons are involved in representing stimuli using a distributed
code (in contrast to many invertebrates in which the focus is more
on the information conveyed by individual specialized neurons
(Rieke et al., 1997)). A second reason is that primates (in contrast to
rodents) have a highly developed cortical visual system and an
ability to perform attentional and visual search tasks similar to
those performed by humans, so that answers to how information is
represented in systems similar to those in humans can be obtained.
Moreover, even the taste system is connected and therefore
probably operates differently in primates and rodents (Rolls,
2008), and the hippocampus appears to contain different types of
neurons in primates (Rolls et al., 1998; Rolls and Xiang, 2006), so
we include analyses of the representation of information in these
systems too in primates.

After reviewing the basic methodology for extracting informa-
tion measures in the next section, the main findings on neuronal
encoding, as well as some specialized methods, are described in
Section 3, and the main conclusions are described in Section 4.

2. Information theory and its applications to the analysis of
neural activity

2.1. Information channels and information measures

Let us consider an information channel that receives symbols s

fromanalphabetS and emitssymbolss0 fromalphabetS0. The mutual
information transmitted by the channel can be expressed by

I ¼
X

s

PðsÞ
X

s0
Pðs0 jsÞlog2

Pðs0 jsÞ
Pðs0 Þ (1)

¼
X
s;s0

Pðs; s
0 Þlog2

Pðs; s0 Þ
PðsÞPðs0 Þ :

The mutual information can also be expressed as the entropy of
the source using alphabet S minus the equivocation of S with
respect to the new alphabet S0 used by the channel, written

I ¼ HðSÞ � HðSjS
0
Þ � HðSÞ �

X
s0

Pðs0 ÞHðSjs0 Þ: (2)

The capacity of the channel can be defined as the maximal mutual
information across all possible sets of input probabilities P(s).

2.2. The information carried by a neuronal response and its average

Considering the processing of information in the brain, we are
often interested in the amount of information the response r of a
neuron, or of a population of neurons, carries about an event
happening in the outside world, for example a stimulus s shown to
the animal. Once the inputs and outputs are conceived of as sets of
symbols from two alphabets, the neuron(s) may be regarded as an
information channel. We may denote with P(s) the a priori

probability that the particular stimulus s out of a given set was
shown, while the conditional probability P(s|r) is the a posteriori

probability, that is updated by the knowledge of the response r. The
Kullback–Leibler distance between these two probability distribu-
tions can be defined as the response-specific transinformation

IðrÞ ¼
X

s

PðsjrÞlog2
PðsjrÞ
PðsÞ ; (3)

which takes the extreme values of I(r) = � log 2P(s(r)) if r

unequivocally determines s(r) (that is, P(s|r) equals 1 for that
one stimulus and 0 for all others); and I(r) =

P
sP(s) log 2(P(s)/

P(s)) = 0 if there is no relation between s and r, that is they are
independent, so that the response tells us nothing new about the
stimulus and thus P(s|r) = P(s).

This positive-definite quantity is one possible definition of the
information conveyed by each particular response. One is usually
interested in further averaging this quantity over all possible
responses r,

hIi ¼
X

r

PðrÞ
X

s

PðsjrÞlog2
PðsjrÞ
PðsÞ

" #
: (4)

The angular brackets hi are used here to emphasize the averaging
operation, in this case over responses. Denoting with P(s, r) the
joint probability of the pair of events s and r, and using Bayes’
theorem, this reduces to the symmetric form (Eq. (1)) for the
mutual information I(S, R)

hIi ¼
X
s;r

Pðs; rÞlog2
Pðs; rÞ

PðsÞPðrÞ (5)

which emphasizes that responses tell us about stimuli just as much
as stimuli tell us about responses. This is, of course, a general
feature, independent of the two variables being in this instance
stimuli and neuronal responses.

In fact, what is of interest, besides the mutual information of
Eqs. (4) and (5), is often the information specifically conveyed
about each stimulus, which can be defined, symmetrically to
Eq. (3), as

IðsÞ ¼
X

r

PðrjsÞlog2
PðrjsÞ
PðrÞ : (6)

This quantity, sometimes written I(s, R) to draw attention to the
fact that it is calculated across the full set of responses R, is again
the positive-definite Kullback–Leibler divergence between two
probability distributions. It has also been called the stimulus-
specific surprise (DeWeese and Meister, 1999) to emphasize its
being always a positive number. An alternative definition of the
stimulus-specific information is additive rather than positive, but
both definitions once averaged across stimuli yield the mutual
information I(S, R), which is both positive and additive.

All these information measures quantify the variability in the
responses elicited by the stimuli, compared to the overall
variability. Since P(r) is the probability distribution of responses
averaged across stimuli, it is evident that, for example, the
stimulus-specific information measure of Eq. (6) depends not only
on the stimulus s, but also on all other stimuli used. Likewise, the
mutual information measure, despite being of an average nature, is
dependent on what set of stimuli has been used in the average. This
emphasizes again the relative nature of all information measures.
More specifically, it underscores the relevance of using, while
measuring the information conveyed by a given neuronal
population, stimuli that are either representative of real-life
stimulus statistics, or are of particular interest for the properties of
the population being examined.
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2.3. Quantifying the speed of information transfer

In Section 3 we shall discuss temporal aspects of neuronal codes
observed in primates, including when they can be described as
temporally modulated codes in contrast to plain firing rate codes. It
is intuitive that if short periods of firing of single cells are
considered, there is less time for temporal modulation effects. The
information conveyed about stimuli by the firing rate and that
conveyed by more detailed temporal codes become similar in
value. When the firing periods analyzed become shorter than
roughly the mean interspike interval, even the statistics of firing
rate values on individual trials cease to be relevant, and the
information content of the firing depends solely on the mean firing
rates across all trials with each stimulus. This is expressed
mathematically by considering the amount of information
provided as a function of the length t of the time window over
which firing is analyzed, and taking the limit for t ! 0 (Skaggs
et al., 1993; Panzeri et al., 1996). To first order in t, only two
responses can occur in a short window of length t: either the
emission of an action potential, with probability trs, where rs is the
mean firing rate calculated over many trials using the same
window and stimulus; or no action potential, with probability
1 � trs. Inserting these conditional probabilities into Eq. (6), taking
the limit and dividing by t, one obtains for the derivative of the
stimulus-specific transinformation

dIðsÞ
dt
¼ rslog2

rs

hri

� �
þ hri � rs

ln2
; (7)

where hri is the grand mean rate across stimuli. This formula thus
gives the rate, in bits/s, at which information about a stimulus
begins to accumulate when the firing of a cell is recorded. Such an
information rate depends only on the mean firing rate to that
stimulus and on the grand mean rate across stimuli. As a function
of rs, it follows the U-shaped curve in Fig. 1.

The curve is universal, in the sense that it applies irrespective of
the detailed firing statistics of the cell, and it expresses the fact that
the emission or not of a spike in a short window conveys
information in as much as the mean response to a given stimulus is
above or below the overall mean rate. No information is conveyed,
over short times, about those stimuli the mean response to which
is the same as the overall mean. In practice, although the curve
describes only the universal behaviour of the initial slope of the
specific information as a function of time, it approximates well the
full stimulus-specific information I(s, R) computed even over
rather long periods (Rolls et al., 1996, 1997c).
Fig. 1. Time derivative of the stimulus-specific information as a function of firing

rate, for a cell firing at a grand mean rate of 50 Hz. For different grand mean rates,

the graph would simply be rescaled.
Averaging Eq. (7) across stimuli one obtains the time derivative
of the mutual information. Further dividing by the overall mean
rate yields the adimensional quantity

x ¼
X

s

PðsÞ rs

hri

� �
log2

rs

hri

� �
(8)

which measures, in bits, the mutual information per spike
provided by the cell (Bialek et al., 1991; Skaggs et al., 1993).
One can prove that this quantity can range from 0 to log 2(1/a)

0 < x < log2
1

a

� �
; (9)

where a is the single neuron sparseness as defined in Section 3.1.1.
For mean rates rs distributed in a nearly binary fashion, x is close to
its upper limit log 2(1/a), whereas for mean rates that are nearly
uniform, or at least unimodally distributed, x is relatively close to
zero (Panzeri et al., 1996). In practice, whenever a large number of
more or less ‘ecological’ stimuli are considered, mean rates are not
distributed in arbitrary ways, but rather tend to follow stereotyped
distributions (which for some neurons approximate an exponen-
tial distribution of firing rates – see Section 3.1 (Treves et al.,
1999b; Baddeley et al., 1997; Rolls and Treves, 1998; Rolls and
Deco, 2002; Franco et al., 2007)), and as a consequence x and a (or,
equivalently, its logarithm) tend to covary (rather than to be
independent variables (Skaggs and McNaughton, 1992)). There-
fore, measuring sparseness is in practice nearly equivalent to
measuring information per spike, and the rate of rise in mutual
information, xhri, is largely determined by the sparseness a and the
overall mean firing rate hri.

The important point to note about the single-cell information
rate xhri is that, to the extent that different cells express non-
redundant codes, as discussed below, the instantaneous informa-

tion flow across a population of C cells can be taken to be simply Cx
hri, and this quantity can easily be measured directly without
major limited sampling biases, or else inferred indirectly through
measurements of the sparseness a. Values for the information rate
xhri that have been published range from 2 to 3 bits/s for rat
hippocampal cells (Skaggs et al., 1993), to 10–30 bits/s for primate
temporal cortex visual cells (Rolls et al., 1997b), and could be
compared with analogous measurements in the sensory systems of
frogs and crickets, in the 100–300 bits/s range (Rieke et al., 1993).

If the first time-derivative of the mutual information measures
information flow, successive derivatives characterize, at the single-
cell level, different firing modes. This is because whereas the first
derivative is universal and depends only on the mean firing rates to
each stimulus, the next derivatives depend also on the variability
of the firing rate around its mean value, across trials, and take
different forms in different firing regimes. Thus they can serve as a
measure of discrimination among firing regimes with limited
variability, for which, for example, the second derivative is large
and positive, and firing regimes with large variability, for which the
second derivative is large and negative. Poisson firing, in which in
every short period of time there is a fixed probability of emitting a
spike irrespective of previous firing, is an example of large
variability, and the second derivative of the mutual information
can be calculated to be

d2I

dt2
¼ ½lna þ ð1 � aÞ�hri2

ðaln2Þ ; (10)

where a is the single neuron sparseness as defined in Section 3.1.1.
This quantity is always negative. Strictly periodic firing is an
example of zero variability, and in fact the second time-derivative
of the mutual information becomes infinitely large in this case
(although actual information values measured in a short time
interval remain of course finite even for exactly periodic firing,



1 In technical usage bootstrap procedures utilize random pairings of responses

with stimuli with replacement, while shuffling procedures utilize random pairings

of responses with stimuli without replacement.
2 Subtracting the ‘square’ of the spurious fraction of information estimated by

this bootstrap procedure as used by Optican et al. (1991) is unfounded and does not

work correctly (see Rolls and Treves (1998) and Tovee et al. (1993)).
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because there is still some variability, �1, in the number of spikes
recorded in the interval). Measures of mutual information from short
intervals of firing of temporal cortex visual cells have revealed a
degree of variability intermediate between that of periodic and of
Poisson regimes (Rolls et al., 1997c). Similar measures can also be
used to contrast the effect of the graded nature of neuronal responses,
once they are analyzed over a finite period of time, with the
information content that would characterize neuronal activity if it
reduced to a binary variable (Panzeri et al., 1996). A binary variable
with the same degree of variability would convey information at the
same instantaneous rate (the first derivative being universal), but in
for example 20–30% reduced amounts when analyzed over times of
the order of the interspike interval or longer.

2.4. The limited sampling problem

With real neurophysiological data, because we typically have
limited numbers of trials, it is difficult from the frequency of each
possible neuronal response to accurately estimate its probability,
and this limits our ability to estimate hIi correctly. We refer to this
as the limited sampling problem. To elaborate, if the responses are
continuous quantities, the probability of observing exactly the
same response twice is infinitesimal. In the absence of further
manipulation, this would imply that each stimulus generates its
own set of unique responses, therefore any response that has
actually occurred could be associated unequivocally with one
stimulus, and the mutual information would always equal the
entropy of the stimulus set. This absurdity shows that in order to
estimate probability densities from experimental frequencies,
one has to resort to some regularizing manipulation, such as
smoothing the point-like response values by convolution with
suitable kernels, or binning them into a finite number of discrete
bins.

2.4.1. Smoothing or binning neuronal response data

The issue is how to estimate the underlying probability
distributions of neuronal responses to a set of stimuli from only
a limited number of trials of data (e.g. 10–30) for each stimulus.
Several strategies are possible. One is to discretize the response
space into bins, and estimate the probability density as the
histogram of the fraction of trials falling into each bin. If the bins
are too narrow, almost every response is in a different bin, and the
estimated information will be overestimated. Even if the bin width
is increased to match the standard deviation of each underlying
distribution, the information may still be overestimated. Alterna-
tively, one may try to ‘smooth’ the data by convolving each
response with a Gaussian with a width set to the standard
deviation measured for each stimulus. Setting the standard
deviation to this value may actually lead to an underestimation
of the amount of information available, due to oversmoothing.
Another possibility is to make a bold assumption as to what the
general shape of the underlying densities should be, for example a
Gaussian. This may produce closer estimates. Methods for
regularizing the data are discussed further by Rolls and Treves
(1998) in their Appendix A2, where a numerical example is given.

2.4.2. The effects of limited sampling

The crux of the problem is that, whatever procedure one adopts,
limited sampling tends to produce distortions in the estimated
probability densities. The resulting mutual information estimates
are intrinsically biased. The bias, or average error of the estimate, is
upward if the raw data have not been regularized much, and is
downward if the regularization procedure chosen has been
heavier. The bias can be, if the available trials are few, much
larger than the true information values themselves. This is
intuitive, as fluctuations due to the finite number of trials available
would tend, on average, to either produce or emphasize differences
among the distributions corresponding to different stimuli,
differences that are preserved if the regularization is ‘light’, and
that are interpreted in the calculation as carrying genuine
information. This is illustrated with a quantitative example by
Rolls and Treves (1998) in their Appendix A2.

Choosing the right amount of regularization, or the best
regularizing procedure, is not possible a priori. Hertz et al.
(1992) have proposed the interesting procedure of using an
artificial neural network to regularize the raw responses. The
network can be trained on part of the data using backpropagation,
and then used on the remaining part to produce what is in effect a
clever data-driven regularization of the responses. This procedure
is, however, rather computer intensive and not very safe, as shown
by some self-evident inconsistency in the results (Heller et al.,
1995). Obviously, the best way to deal with the limited sampling
problem is to try and use as many trials as possible. The
improvement is slow, however, and generating as many trials as
would be required for a reasonably unbiased estimate is often, in
practice, impossible.

2.4.3. Correction procedures for limited sampling

The above point, that data drawn from a single distribution,
when artificially paired, at random, to different stimulus labels,
results in ‘spurious’ amounts of apparent information, suggests a
simple way of checking the reliability of estimates produced from
real data (Optican et al., 1991). One can disregard the true stimulus
associated with each response, and generate a randomly reshuffled
pairing of stimuli and responses, which should therefore, being not
linked by any underlying relationship, carry no mutual information
about each other. Calculating, with some procedure of choice, the
spurious information obtained in this way, and comparing with the
information value estimated with the same procedure for the real
pairing, one can get a feeling for how far the procedure goes into
eliminating the apparent information due to limited sampling.
Although this spurious information, Is, is only indicative of the
amount of bias affecting the original estimate, a simple heuristic
trick (called ‘bootstrap’1) is to subtract the spurious from the
original value, to obtain a somewhat ‘corrected’ estimate. This
procedure can result in quite accurate estimates (see Rolls and
Treves (1998), Tovee et al. (1993))2.

A different correction procedure (called ‘jack-knife’) is based on
the assumption that the bias is proportional to 1/N, where N is the
number of responses (data points) used in the estimation. One
computes, beside the original estimate hINi, N auxiliary estimates
hIN�1ik, by taking out from the data set response k, where k runs
across the data set from 1 to N. The corrected estimate

hIi ¼ NhINi � 1

N

X
k

ðN � 1ÞhIN�1ik (11)

is free from bias (to leading order in 1/N), if the proportionality
factor is more or less the same in the original and auxiliary
estimates. This procedure is very time-consuming, and it suffers
from the same imprecision of any algorithm that tries to determine
a quantity as the result of the subtraction of two large and nearly
equal terms; in this case the terms have been made large on
purpose, by multiplying them by N and N � 1.

A more fundamental approach (Miller, 1955) is to derive an
analytical expression for the bias (or, more precisely, for its leading
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Decoding. s0 is the decoded stimulus, i.e. that predicted from the neuronal

responses r.

s ⇒ r →
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s
I(s, r)
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Fig. 2. This diagram shows the average response for each of several cells (Cell 1, etc.)

to each of several stimuli (S1, etc.). The change of firing rate from the spontaneous

rate is indicated by the vertical line above or below the horizontal line, which

represents the spontaneous rate. We can imagine guessing or predicting from such

a table the predicted stimulus S? (i.e. s0) that was present on any one trial.
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terms in an expansion in 1/N, the inverse of the sample size). This
allows the estimation of the bias from the data itself, and its
subsequent subtraction, as discussed in Treves and Panzeri (1995)
and Panzeri and Treves (1996). Such a procedure produces
satisfactory results, thereby lowering the size of the sample
required for a given accuracy in the estimate by about an order of
magnitude (Golomb et al., 1997). However, it does not, in itself,
make possible measures of the information contained in very
complex responses with few trials. As a rule of thumb, the number
of trials per stimulus required for a reasonable estimate of
information, once the subtractive correction is applied, is of the
order of the effectively independent (and utilized) bins in which
the response space can be partitioned (Panzeri and Treves, 1996).
This correction procedure is the one that we use standardly (Rolls
et al., 1997c, 1996, 1998, 1999, 2006, 2010a; Booth and Rolls,
1998).

2.5. The information from multiple cells: decoding procedures

2.5.1. Decoding

The bias of information measures grows with the dimensional-
ity of the response space, and for all practical purposes the limit on
the number of dimensions that can lead to reasonably accurate
direct measures, even when applying a correction procedure, is
quite low, two to three. This implies, in particular, that it is not
possible to apply equation 5 to extract the information content in
the responses of several cells (more than two to three) recorded
simultaneously. One way to address the problem is then to apply
some strong form of regularization to the multiple cell responses.
Smoothing has already been mentioned as a form of regularization
that can be tuned from very soft to very strong, and that preserves
the structure of the response space. Binning is another form, which
changes the nature of the responses from continuous to discrete,
but otherwise preserves their general structure, and which can also
be tuned from soft to strong. Other forms of regularization involve
much more radical transformations, or changes of variables.

Of particular interest for information estimates is a change of
variables that transforms the response space into the stimulus set,
by applying an algorithm that derives a predicted stimulus from
the response vector, i.e. the firing rates of all the cells, on each trial.
Applying such an algorithm is called decoding. Of course, the
predicted stimulus is not necessarily the same as the actual one.
Therefore the term decoding should not be taken to imply that the
algorithm works successfully, each time identifying the actual
stimulus. The predicted stimulus is simply a function of the
response, as determined by the algorithm considered. Just as with
any regularizing transform, it is possible to compute the mutual
information between actual stimuli s and predicted stimuli s0,
instead of the original one between stimuli s and responses r. Since
information about (real) stimuli can only be lost and not be
created by the transform, the information measured in this way is
bound to be lower in value than the real information in the
responses. If the decoding algorithm is efficient, it manages to
preserve nearly all the information contained in the raw
responses, while if it is poor, it loses a large portion of it. If the
responses themselves provided all the information about stimuli,
and the decoding is optimal, then predicted stimuli coincide with
the actual stimuli, and the information extracted equals the
entropy of the stimulus set.

The procedure for extracting information values after applying
a decoding algorithm is indicated in Fig. 2 (in which s? is s0). The
underlying idea indicated in Fig. 2 is that if we know the average
firing rate of each cell in a population to each stimulus, then on any
single trial we can guess (or decode) the stimulus that was present
by taking into account the responses of all the cells. The decoded
stimulus is s0, and the actual stimulus that was shown is s. [What
we wish to know is how the percentage correct, or better still the
information, based on the evidence from any single trial about
which stimulus was shown, increases as the number of cells in the
population sampled increases. We can expect that the more cells
there are in the sample, the more accurate the estimate of the
stimulus is likely to be. If the encoding was local, the number of
stimuli encoded by a population of neurons would be expected to
rise approximately linearly with the number of neurons in the
population. In contrast, with distributed encoding, provided that
the neuronal responses are sufficiently independent, and are
sufficiently reliable (not too noisy), information from the ensemble
would be expected to rise linearly with the number of cells in the
ensemble, and (as information is a log measure) the number of
stimuli encodable by the population of neurons might be expected
to rise exponentially as the number of neurons in the sample of the
population was increased.]

The procedure is schematized in Table 1 where the double
arrow indicates the transformation from stimuli to responses
operated by the nervous system, while the single arrow indicates
the further transformation operated by the decoding procedure.
I(s, s 0) is the mutual information between the actual stimuli s and
the stimuli s0 that are predicted to have been shown based on the
decoded responses. The decoding procedure just described is
called maximum likelihood decoding, because only the most likely
stimulus on a given trial given the responses of the neurons on that
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trial is decoded. We refer to the information estimated with this
procedure as Iml.

A slightly more complex variant of this procedure is a decoding
step that extracts from the response on each trial not a single
predicted stimulus, but rather probabilities that each of the
possible stimuli was the actual one. The joint probabilities of actual
and posited stimuli can be averaged across trials, and information
computed from the resulting probability matrix (S � S). Computing
information in this way takes into account the relative uncertainty
in assigning a predicted stimulus to each trial, an uncertainty that
is instead not considered by the previous procedure based solely
on the identification of the maximally likely stimulus (Treves,
1997). Maximum likelihood information values Iml based on a single
stimulus tend therefore to be higher than probability information
values Ip based on the whole set of stimuli, although in very specific
situations the reverse could also be true.

The same correction procedures for limited sampling can be
applied to information values computed after a decoding step.
Values obtained from maximum likelihood decoding, Iml, suffer from
limited sampling more than those obtained from probability
decoding, Ip, since each trial contributes a whole ‘brick’ of weight
1/N (N being the total number of trials), whereas with probabilities
each brick is shared among several slots of the (S � S) probability
matrix. The neural network procedure devised by Hertz et al. (1992)
can in fact be thought of as a decoding procedure based on
probabilities, which deals with limited sampling not by applying a
correction but rather by strongly regularizing the original responses.

When decoding is used, the rule of thumb becomes that the
minimal number of trials per stimulus required for accurate
information measures is roughly equal to the size of the stimulus
set, if the subtractive correction is applied (Panzeri and Treves,
1996). This correction procedure is applied as standard in our
multiple cell information analyses that use decoding (Rolls et al.,
1997b, 1998, 2006, 2009, 2010a; Booth and Rolls, 1998; Franco
et al., 2004; Aggelopoulos et al., 2005).

2.5.2. Decoding algorithms

Any transformation from the response space to the stimulus set
could be used in decoding, but of particular interest are the
transformations that either approach optimality, so as to minimize
information loss and hence the effect of decoding, or else are
implementable by mechanisms that could conceivably be operat-
ing in the brain, so as to extract information values that could be
extracted by the brain itself.

The optimal transformation is in theory well-defined: one
should estimate from the data the conditional probabilities P(r|s),
and use Bayes’ rule (see Glossary in Section 5) to convert them into
the conditional probabilities P(s0|r). Having these for any value of r,
one could use them to estimate Ip, and, after selecting for each
particular real response the stimulus with the highest conditional
probability, to estimate Iml. To avoid biasing the estimation of
conditional probabilities, the responses used in estimating P(r|s)
should not include the particular response for which P(s0|r) is going
to be derived (jack-knife cross-validation). In practice, however,
the estimation of P(r|s) in usable form involves the fitting of some
simple function to the responses. This need for fitting, together
with the approximations implied in the estimation of the various
quantities, prevents us from defining the really optimal decoding,
and leaves us with various algorithms, depending essentially on
the fitting function used, which are hopefully close to optimal in
some conditions. We have experimented extensively with two
such algorithms, which both approximate Bayesian decoding
(Rolls et al., 1997b). Both these algorithms fit the response vectors
produced over several trials by the cells being recorded to a
product of conditional probabilities for the response of each cell
given the stimulus. In one case, the single cell conditional
probability is assumed to be Gaussian (truncated at zero); in the
other it is assumed to be Poisson (with an additional weight at
zero). Details of these algorithms are given by Rolls et al. (1997b).

Biologically plausible decoding algorithms are those that limit
the algebraic operations used to types that could be easily
implemented by neurons, e.g. dot product summations, thresh-
olding and other single-cell non-linearities, and competition and
contrast enhancement among the outputs of nearby cells. There is
then no need for ever fitting functions or other sophisticated
approximations, but of course the degree of arbitrariness in
selecting a particular algorithm remains substantial, and a
comparison among different choices based on which yields the
higher information values may favour one choice in a given
situation and another choice with a different data set.

To summarize, the key idea in decoding, in our context of
estimating information values, is that it allows substitution of a
possibly very high-dimensional response space (which is difficult
to sample and regularize) with a reduced object much easier to
handle, that is with a discrete set equivalent to the stimulus set.
The mutual information between the new set and the stimulus set
is then easier to estimate even with limited data, that is with
relatively few trials. For each response recorded, one can use all the
responses except for that one to generate estimates of the average
response vectors (the average response for each neuron in the
population) to each stimulus. Then one considers how well the
selected response vector matches the average response vectors,
and uses the degree of matching to estimate, for all stimuli, the
probability that they were the actual stimuli. The form of the
matching embodies the general notions about population encod-
ing, for example the ‘degree of matching’ might be simply the dot
product between the current vector and the average vector (rav),
suitably normalized over all average vectors to generate probabili-
ties

Pðs0 jrðsÞÞ ¼ rðsÞ � ravðs0 ÞP
s00 rðsÞ � ravðs00 Þ (12)

where s00 is a dummy variable. (This is called dot product decoding.)
One ends up, then, with a table of conjoint probabilities P(s, s 0), and
another table obtained by selecting for each trial the most likely (or
predicted) single stimulus sp, P(s, sp). Both s0 and sp stand for all
possible stimuli, and hence belong to the same set S. These can be
used to estimate mutual information values based on probability
decoding (Ip) and on maximum likelihood decoding (Iml):

hIpi ¼
X
s 2 S

X
s0 2 S

Pðs; s
0 Þlog2

Pðs; s0 Þ
PðsÞPðs0 Þ (13)

and

hImli ¼
X
s 2 S

X
sp 2 S

Pðs; spÞlog2
Pðs; spÞ

PðsÞPðspÞ : (14)

Examples of the use of these procedures are available (Rolls
et al., 1997b, 1998, 2004, 2006; Booth and Rolls, 1998; Franco et al.,
2004; Ince et al., 2010b), and some of the results obtained are
described in Section 3.

2.6. Information in the correlations between the spikes of different

cells

Simultaneously recorded neurons sometimes shows cross-
correlations in their firing, that is the firing of one is systematically
related to the firing of the other cell. One example of this is neuronal
response synchronization. The cross-correlation, to be defined
below, shows the time difference between the cells at which the
systematic relation appears. A significant peak or trough in the cross-
correlation function could reveal a synaptic connection from one cell
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to the other, or a common input to each of the cells, or any of a
considerable number of other possibilities. If the synchronization
occurred for only some of the stimuli, then the presence of the
significant cross-correlation for only those stimuli could provide
additional evidence separate from any information in the firing rate
of the neurons about which stimulus had been shown. Information
theory in principle provides a way of quantitatively assessing the
relative contributions from these two types of encoding, by
expressing what can be learned from each type of encoding in the
same units, bits of information.

Fig. 3 illustrates how synchronization occurring only for some
of the stimuli could be used to encode information about which
stimulus was presented. In the figure the spike trains of three
neurons are shown after the presentation of two different stimuli
on one trial. As shown by the cross-correlogram in the lower part of
the figure, the responses of cell 1 and cell 2 are synchronized when
stimulus 1 is presented, as whenever a spike from cell 1 is emitted,
another spike from cell 2 is emitted after a short time lag. In
contrast, when stimulus 2 is presented, synchronization effects do
not appear. Thus, based on a measure of the synchrony between
the responses of cells 1 and 2, it is possible to obtain some
information about what stimulus has been presented. The
contribution of this effect is measured as the stimulus-dependent
synchronization information. Cells 1 and 2 have no information
about what stimulus was presented from the number of spikes, as
the same number is found for both stimuli. Cell 3 carries
information in the spike count in the time window (which is also
called the firing rate) about what stimulus was presented. (Cell 3
emits 6 spikes for stimulus 1 and 3 spikes for stimulus 2.)

2.6.1. A decoding approach

The example shown in Fig. 3 is for the neuronal responses on a
single trial. Given that the neuronal responses are variable from
trial to trial, we need a method to quantify the information that is
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Fig. 3. Illustration of the information that could be carried by spike trains. The

responses of three cells to two different stimuli are shown on one trial. Cell 3 reflects

which stimulus was shown in the number of spikes produced, and this can be

measured as spike count or rate information. Cells 1 and 2 have no spike count or

rate information, because the number of spikes is not different for the two stimuli.

Cells 1 and 2 do show some synchronization, reflected in the cross-correlogram,

that is stimulus dependent, as the synchronization is present only when stimulus 1

is shown. The contribution of this effect is measured as the stimulus-dependent

synchronization information.
gained from a single trial of spike data in the context of the
measured variability in the responses of all of the cells, including
how the cells’ responses covary in a way that may be partly
stimulus-dependent, and may include synchronization effects. The
direct approach is to apply the Shannon mutual information
measure (Shannon, 1948; Cover and Thomas, 1991)

Iðs; rÞ ¼
X
s 2 S

X
r

Pðs; rÞlog2
Pðs; rÞ

PðsÞPðrÞ ; (15)

where P(s, r) is a probability table embodying a relationship
between the variable s (here, the stimulus) and r (a vector where
each element is the firing rate of one neuron).

However, because the probability table of the relation between
the neuronal responses and the stimuli, P(s, r), is so large (given that
there may be many stimuli, and that the response space which has to
include spike timing is very large), in practice it is difficult to obtain a
sufficient number of trials for every stimulus to generate the
probability table accurately, at least with data from mammals in
which the experiment cannot usually be continued for many hours
of recording from a whole population of cells. To circumvent this
undersampling problem, Rolls et al. (1997b) developed a decoding
procedure (described in Section 2.5), and a similar decoding process
is used when measuring the information conveyed by cross-
correlations between neurons, as described next.

The new step taken by Franco et al. (2004) is to introduce into
the Table Data(s, r) shown in the upper part of Fig. 4 new columns,
shown on the right of the diagram, containing a measure of the
cross-correlation (averaged across trials in the upper part of the
table) for some pairs of cells (labelled as Corrln Cells 1–2 and 2–3).
The decoding procedure can then take account of any cross-
correlations between pairs of cells, and thus measure any
contributions to the information from the population of cells that
arise from cross-correlations between the neuronal responses. If
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Fig. 4. Decoding neuronal firing rates and cross-correlations between neurons. The

left part of the diagram shows the average firing rate (or equivalently spike count)

responses of each of 3 cells (labelled as Rate Cell 1, 2, 3) to a set of 3 stimuli. The right

two columns show a measure of the cross-correlation (averaged across trials) for

some pairs of cells (labelled as Corrln Cells 1–2 and 2–3). The last row (labelled

Response single trial) shows the data that might be obtained from a single trial and

from which the stimulus that was shown (St. ? or s0) must be estimated or decoded,

using the average values across trials shown in the top part of the table. From the

responses on the single trial, the most probable decoded stimulus is stimulus 2,

based on the values of both the rates and the cross-correlations.

After Franco et al. (2004).



3 gij(s) is an alternative, which produces a more compact information analysis,

to the neuronal cross-correlation based on the Pearson correlation coefficient

rij(s) (Eq. (18)), which normalizes the number of coincidences above indepen-

dence to the standard deviation of the number of coincidences expected if the cells

were independent. The normalization used by the Pearson correlation coefficient

has the advantage that it quantifies the strength of correlations between neurons

in a rate-independent way. For the information analysis, it is more convenient to

use the scaled correlation density gij(s) than the Pearson correlation coefficient,

because of the compactness of the resulting formulation, and because of its scaling

properties for small t. gij(s) remains finite as t ! 0, thus by using this measure we

can keep the t expansion of the information explicit. Keeping the time-

dependence of the resulting information components explicit greatly increases

the amount of insight obtained from the series expansion. In contrast, the Pearson

noise-correlation measure applied to short timescales approaches zero at short

time windows:

rijðsÞ �
niðsÞn jðsÞ � niðsÞn jðsÞ

sniðsÞsn jðsÞ
’ tg ijðsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
riðsÞr jðsÞ

q
; (18)

where sniðsÞ is the standard deviation of the count of spikes emitted by cell i in

response to stimulus s.
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these cross-correlations are stimulus-dependent, then their
positive contribution to the information encoded can be measured.

To test different hypotheses, the decoding can be based on all
the columns of the Table (to provide the total information available
from both the firing rates and the stimulus-dependent synchroni-
zation), on only the columns with the firing rates (to provide the
information available from the firing rates), and only on the
columns with the cross-correlation values (to provide the
information available from the stimulus-dependent cross-correla-
tions). Any information from stimulus-dependent cross-correla-
tions will not necessarily be orthogonal to the rate information,
and the procedures allow this to be checked by comparing the total
information to that from the sum of the two components.

The measure of the synchronization introduced into the Table
Data(s, r) on each trial is, for example, the value of the Pearson
cross-correlation coefficient calculated for that trial at the
appropriate lag for cell pairs that have significant cross-correla-
tions (Franco et al., 2004). This value of this Pearson cross-
correlation coefficient for a single trial can be calculated from pairs
of spike trains on a single trial by forming for each cell a vector of 0s
and 1s, the 1s representing the time of occurrence of spikes with a
temporal resolution of 1 ms. Resulting values within the range �1
to 1 are shifted to obtain positive values. An advantage of basing
the measure of synchronization on the Pearson cross-correlation
coefficient is that it measures the amount of synchronization
between a pair of neurons independently of the firing rate of the
neurons. The lag at which the cross-correlation measure was
computed for every single trial, and whether there was a
significant cross-correlation between neuron pairs, can be identi-
fied from the location of the peak in the cross-correlogram taken
across all trials. The cross-correlogram is calculated by, for every
spike that occurred in one neuron, incrementing the bins of a
histogram that correspond to the lag times of each of the spikes
that occur for the other neuron. The raw cross-correlogram is
corrected by subtracting the ‘shift predictor’ cross-correlogram
(which is produced by random re-pairings of the trials), to produce
the corrected cross-correlogram.

The decoding procedures used are similar to those described in
Section 2.5 but applied to data of the type shown in Fig. 4, and
further details of the decoding procedures are provided elsewhere
(Rolls et al., 1997b; Franco et al., 2004). Examples of the use of
these procedures are available (Franco et al., 2004; Aggelopoulos
et al., 2005), and some of the results obtained are described in
Section 3.

2.6.2. A second derivative approach

Another information theory-based approach to stimulus-depen-
dent cross-correlation information has been developed as follows by
Panzeri et al. (1999a) and Rolls et al. (2003b), extending the time-
derivative approach of Section 2.3 (see also Ince et al. (2010b)).

This approach then addresses the limited sampling problem by
taking short time epochs for the information analysis, in which low
numbers of spikes, in practice typically 0, 1, or 2, spikes are likely to
occur from each neuron.

Taking advantage of this, the response probabilities can be
calculated in terms of pairwise correlations. These response
probabilities are inserted into the Shannon information formula
16 to obtain expressions quantifying the impact of the pairwise
correlations on the information I(t) transmitted in a short time t by
groups of spiking neurons:

IðtÞ ¼
X
s 2 S

X
r

Pðs; rÞlog2
Pðs; rÞ

PðsÞPðrÞ (16)

where r is the firing rate response vector comprised by the number
of spikes emitted by each of the cells in the population in the short
time t, and P(s, r) refers to the joint probability distribution of
stimuli with their respective neuronal response vectors.

The information depends upon the following two types of
correlation:

The correlations in the neuronal response variability from
the average to each stimulus (sometimes called ‘‘noise’’
correlations) g:

gij(s) (for i 6¼ j) is the fraction of coincidences above (or below)
that expected from uncorrelated responses, relative to the number
of coincidences in the uncorrelated case (which is niðsÞn jðsÞ, the bar
denoting the average across trials belonging to stimulus s, where
ni(s) is the number of spikes emitted by cell i to stimulus s on a
given trial)

g ijðsÞ ¼
niðsÞn jðsÞ
ðniðsÞn jðsÞÞ

� 1; (17)

and is named the ‘scaled cross-correlation density’. It can vary from
�1 to 1; negative gij(s)’s indicate anticorrelation, whereas positive
gij(s)’s indicate correlation3. gij(s) can be thought of as the amount
of trial by trial concurrent firing of the cells i and j, compared to that
expected in the uncorrelated case. gij(s) (for i 6¼ j) is the ‘scaled
cross-correlation density’ (Aertsen et al., 1989; Panzeri et al.,
1999a), and is sometimes called the ‘‘noise’’ correlation (Gawne
and Richmond, 1993; Shadlen and Newsome, 1995, 1998).

The correlations in the mean responses of the neurons across
the set of stimuli (sometimes called ‘‘signal’’ correlations) n:

nij ¼
hniðsÞn jðsÞis
hniðsÞishn jðsÞis

� 1 ¼
hriðsÞr jðsÞis
hriðsÞishr jðsÞis

� 1 (19)

where riðsÞ is the mean rate of response of cell i (among C cells in
total) to stimulus s over all the trials in which that stimulus was
present. nij can be thought of as the degree of similarity in the mean
response profiles (averaged across trials) of the cells i and j to
different stimuli. nij is sometimes called the ‘‘signal’’ correlation
(Gawne and Richmond, 1993; Shadlen and Newsome, 1995, 1998).

2.6.3. Information in the cross-correlations in short time periods

In the short timescale limit, the first (It) and second (Itt)
information derivatives describe the information I(t) available in
the short time t

IðtÞ ¼ tIt þ
t2

2
Itt : (20)

(The zeroth order, time-independent term is zero, as no
information can be transmitted by the neurons in a time window
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of zero length. Higher order terms are also excluded as they
become negligible.)

The instantaneous information rate It is4

It ¼
XC

i¼1

riðsÞlog2
riðsÞ

riðs0 Þh is0

� �
s

: (21)

This formula, which is just the average across stimuli, summed
across neurons of Eq. (7), shows that this information rate (the first
time derivative) should not be linked to a high signal-to-noise ratio,
but only reflects the extent to which the mean responses of each cell
are distributed across stimuli. It does not reflect anything of the
variability of those responses, that is of their noisiness, nor anything
of the correlations among the mean responses of different cells.

The effect of (pairwise) correlations between the cells begins to
be expressed in the second time derivative of the information. The
expression for the instantaneous information ‘acceleration’ Itt (the
second time derivative of the information) breaks up into three
terms:

Itt ¼
1

ln2

XC

i¼1

XC

j¼1

riðsÞh is r jðsÞ
� �

s
nij þ ð1þnijÞlnð

1

1 þ nij
Þ

	 


þ
XC

i¼1

XC

j¼1

riðsÞr jðsÞg ijðsÞ
D E

s

h i
log2ð

1

1 þ nij
Þ

þ
XC

i¼1

XC

j¼1

riðsÞr jðsÞð1þg ijðsÞÞlog2

ð1þ g ijðsÞÞ riðs
0 Þr jðs

0 Þ
� �

s0

riðs0 Þr jðs0 Þð1þg ijðs
0 ÞÞ

D E
s0

2
64

3
75

* +
s

:

(22)

The first of these terms is all that survives if there is no noise
correlation at all. Thus the rate component of the information is
given by the sum of It (which is always greater than or equal to
zero) and of the first term of Itt (which is instead always less than or
equal to zero).

The second term is non-zero if there is some correlation in the
variance to a given stimulus, even if it is independent of which
stimulus is present; this term thus represents the contribution of
stimulus-independent noise correlation to the information.

The third component of Itt represents the contribution of
stimulus-modulated noise correlation, as it becomes non-zero only
for stimulus-dependent noise correlations. These last two terms of
Itt together are referred to as the correlational components of the
information.

The application of this approach to measuring the information
in the relative time of firing of simultaneously recorded cells,
together with further details of the method, are described by
Panzeri et al. (1999b), Rolls et al. (2003b), and Rolls et al. (2004),
and in Section 3.3.6.

2.6.4. Limitations of the derivative approach

The second derivative approach is elegant, but severely limited
in its applicability to very short times, of order the mean interspike
interval divided by the number of cells in the population. Over
these short times, the dominant contribution is that of individual
cells, summating linearly even if correlated, and pairwise
correlations give a minor contribution. The reason for the
limitation is that over longer times, when pairwise correlations
begin to play a substantial role, also three-way and higher order
correlations come to the fore, and assessing their contribution is
intractable. In fact, one can consider for the sake of the argument a
4 Note that s0 is used in Eqs. (21) and (22) just as a dummy variable to stand for s,

as there are two summations performed over s.
model of a large ensemble, in which correlations among the signal
and noise components of neuronal firing are small in absolute
value and entirely random in origin (Bezzi et al., 2002). Even such
small random correlations are shown to lead to large possible
synergy or redundancy, whenever the time window for extracting
information from neuronal firing extends to the order of the mean
interspike interval. Details of the argument are presented by Bezzi
et al. (2002).

2.7. Programs for information measurement from neuronal responses

Computer programs have been made available for the
measurement of the information contained in neuronal responses
(Ince et al., 2010a; Magri et al., 2009). We emphasize that care is
needed in applying these to real neuronal data and interpreting the
results, with many of the relevant issues described above.

3. Neuronal encoding: results obtained from information-
theoretic analyses

How is information encoded in cortical areas such as the
inferior temporal visual cortex? Can we read the code being used
by the cortex? What are the advantages of the encoding scheme
used for the neuronal network computations being performed in
different areas of the cortex? These are some of the key issues
considered in this Section (3). Because information is exchanged
between the computing elements of the cortex (the neurons) by
their spiking activity, which is conveyed by their axon to synapses
onto other neurons, the appropriate level of analysis is how single
neurons, and populations of single neurons, encode information in
their firing. More global measures that reflect the averaged activity
of large numbers of neurons (for example, PET (positron emission
tomography) and fMRI (functional magnetic resonance imaging),
EEG (electroencephalographic recording), and ERPs (event-related
potentials)) cannot reveal how the information is represented, or
how the computation is being performed (Rolls et al. (2009);
Section 3.6).

In the treatment provided here, we focus on applications to the
mammalian and especially the primate brain, using examples from
a whole series of investigations on information representation in
visual cortical areas, the hippocampus, and the taste and olfactory
systems, the original papers on which refer to related publications.
To provide an indication of the type of neuronal data that will be
considered, Fig. 5 shows typical firing rate changes of a single
neuron in the macaque inferior temporal visual cortex on different
trials to each of several different faces (Tovee et al., 1993). This
makes it clear that from the firing rate on any one trial, information
is available about which stimulus was shown, and that the firing
rate is graded, with a different firing rate response of the neuron to
each stimulus.

3.1. The sparseness of the distributed encoding used by the brain

Some of the types of representation that might be found at the
neuronal level are summarized next. A local representation is one
in which all the information that a particular stimulus or event
occurred is provided by the activity of one of the neurons. This is
sometimes called a grandmother cell representation, because in a
famous example, a single neuron might be active only if one’s
grandmother was being seen (see Barlow (1995)). A fully
distributed representation is one in which all the information
that a particular stimulus or event occurred is provided by the
activity of the full set of neurons. If the neurons are binary (for
example, either active or not), the most distributed encoding is
when half the neurons are active for any one stimulus or event. A
sparse distributed representation is a distributed representation



Fig. 5. Peristimulus time histograms and rastergrams showing the responses on

different trials (originally in random order) of a face-selective neuron in the inferior

temporal visual cortex to four different faces. (In the rastergrams each vertical line

represents one spike from the neuron, and each row is a separate trial. Each block of

the figure is for a different face.)

From Tovee et al. (1993).

Fig. 6. Firing rate distribution of a single neuron in the temporal visual cortex to a set of

23 face (F) and 45 non-face images of natural scenes. The firing rate to each of the 68

stimuli is shown. The neuron does not respond to just one of the 68 stimuli. Instead, it

responds to a small proportion of stimuli with high rates, to more stimuli with

intermediate rates, and to many stimuli with almost no change of firing. This is typical

of the distributed representations found in temporal cortical visual areas. The

response, that is the firing rate minus the baseline spontaneous firing rate, is shown.

After Rolls and Tovee (1995).
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in which a small proportion of the neurons is active at any one
time. A local representation is sometimes termed a ‘labelled line’
representation, and a distributed representation is sometimes
termed an ‘across neuron’ or ‘across fiber’ representation because
the information can only be decoded by knowing the activity of an
ensemble or population of neurons. A ‘place’ representation refers
to the fact that the particular neurons that are active is important
in encoding the information, and this in principle could apply to
a local or distributed representation. In another type of encoding,
the firing rate encodes the nature of the stimulus, as in the
phase-locked encoding of frequency in the peripheral auditory
system for stimuli below approximately 1 kHz. In most types of
encoding, it is the relative firing rates of the particular ensemble of
neurons that are firing that encodes which stimulus is present or
its position in a topological space such as the retina or body surface
as in distributed encoding, and the absolute firing rates of the
active ensemble indicate the intensity of the stimulus.

3.1.1. Single neuron sparseness as

Eq. (23) defines a measure of the single neuron sparseness, as:

as ¼
PS

s¼1 ys=S
� �2

PS
s¼1 y2

s

� �
=S

(23)

where ys is the mean firing rate of the neuron to stimulus s in the set
of S stimuli (Rolls and Treves, 1998). For a binary representation, as is
0.5 for a fully distributed representation, and 1/S if a neuron
responds to one of the set of S stimuli. Another measure of
sparseness is the kurtosis of the distribution, which is the fourth
moment of the distribution. It reflects the length of the tail of the
distribution. The distribution of the firing rates of a neuron in the
inferior temporal visual cortex to a set of 65 stimuli is shown in Fig. 6.
The sparseness as for this neuron was 0.69 (Rolls et al., 1997c).



Table 2
Coding in associative memories.a

Local Sparse distributed Fully distributed

Generalization, completion, graceful degradation No Yes Yes

Number of patterns that can N of order C/[ao log (1/ao)] of order C

be stored (large) (can be larger) (usually smaller than N)

Amount of information Minimal Intermediate Large

in each pattern (values if binary) (log(N) bits) (Nao log (1/ao) bits) (N bits)

a N refers here to the number of output units, and C to the average number of inputs to each output unit. ao is the sparseness of output patterns, or roughly the proportion of

output units activated by a UCS pattern. Note: logs are to the base 2.
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It is important to understand and quantify the sparseness of
representations in the brain, because many of the useful properties
of neuronal networks such as generalization and completion only
occur if the representations are distributed (Rolls, 2008), and
because the value of the sparseness is an important factor in how
many memories can be stored in such neural networks (Rolls and
Treves, 1990; Treves and Rolls, 1991). Relatively sparse repre-
sentations (low values of as) might be expected in memory systems
as this will increase the number of different memories that can be
stored and retrieved. Less sparse representations might be
expected in sensory systems, as this could allow more information
to be represented (see Table 2; and Rolls (2008)).

3.1.2. Grandmother cells vs. graded firing rates

Barlow (1972) proposed a single neuron doctrine for perceptual
psychology. He proposed that sensory systems are organized to
achieve as complete a representation as possible with the
minimum number of active neurons. He suggested that at
progressively higher levels of sensory processing, fewer and fewer
cells are active, and that each represents a more and more specific
happening in the sensory environment. He suggested that 1,000
active neurons (which he called cardinal cells) might represent the
whole of a visual scene. An important principle involved in forming
such a representation was the reduction of redundancy. The
implication of Barlow’s (1972) approach was that when an object is
being recognized, there are, towards the end of the visual system, a
small number of neurons (the cardinal cells) that are so specifically
tuned that the activity of these neurons encodes the information
that one particular object is being seen. (He thought that an active
neuron conveys something of the order of complexity of a word.)
The encoding of information in such a system is described as local,
in that knowing the activity of just one neuron provides evidence
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Fig. 7. Firing rate probability distributions for two neurons in the inferior temporal visual c

an exponential probability distribution (dashed line). (b) A neuron that did not fit an exp

dashed line). The firing rates were measured in an interval 100–300 ms after the onse

After Franco et al. (2007).
that a particular stimulus (or, more exactly, a given ‘trigger
feature’) is present. Barlow (1972) eschewed ‘combinatorial rules
of usage of nerve cells’, and believed that the subtlety and
sensitivity of perception results from the mechanisms determining
when a single cell becomes active. In contrast, with distributed or
ensemble encoding, the activity of several or many neurons must
be known in order to identify which stimulus is present, that is, to
read the code. It is the relative firing of the different neurons in the
ensemble that provides the information about which object is
present.

At the time Barlow (1972) wrote, there was little actual
evidence on the activity of neurons in the higher parts of the visual
and other sensory systems. There is now considerable evidence,
which is now described.

First, it has been shown that the representation of which
particular object (face) is present is actually rather distributed.
Baylis et al. (1985) showed this with the responses of temporal
cortical neurons that typically responded to several members of a
set of faces, with each neuron having a different profile of
responses to each face (with an example for one neuron in Fig. 6)
(Rolls and Tovee, 1995; Rolls, 2008). It would be difficult for most
such single cells to tell which of a set of faces had been seen.

Second, the distributed nature of the representation can be
further understood by the finding that the firing rate probability
distribution of single neurons, when a wide range of natural visual
stimuli are being viewed, is approximately exponential, with
rather few stimuli producing high firing rates, and increasingly
large numbers of stimuli producing lower and lower firing rates, as
illustrated in Fig. 7a (Rolls and Tovee, 1995; Baddeley et al., 1997;
Treves et al., 1999b; Franco et al., 2007).

For example, the responses of a set of temporal cortical neurons
to 23 faces and 42 non-face natural images were measured, and a
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ortex tested with a set of 20 face and non-face stimuli. (a) A neuron with a good fit to

onential firing rate distribution (but which could be fitted by a gamma distribution,

t of the visual stimuli, and similar distributions are obtained in other intervals.
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distributed representation was found (Rolls and Tovee, 1995). The
tuning was typically graded, with a range of different firing rates to
the set of faces, and very little response to the non-face stimuli (see
example in Fig. 6). The spontaneous firing rate of the neuron in
Fig. 6 was 20 spikes/s, and the histogram bars indicate the change
of firing rate from the spontaneous value produced by each
stimulus. Stimuli that are faces are marked F, or P if they are in
profile. B refers to images of scenes that included either a small face
within the scene, sometimes as part of an image that included a
whole person, or other body parts, such as hands (H) or legs. The
non-face stimuli are unlabelled. The neuron responded best to
three of the faces (profile views), had some response to some of the
other faces, and had little or no response, and sometimes had a
small decrease of firing rate below the spontaneous firing rate, to
the non-face stimuli. The sparseness value as for this cell across all
68 stimuli was 0.69, and the response sparseness as

r (based on the
evoked responses minus the spontaneous firing of the neuron) was
0.19. It was found that the sparseness of the representation of the
68 stimuli by each neuron had an average across all neurons of 0.65
(Rolls and Tovee, 1995). This indicates a rather distributed
representation. (If neurons had a continuum of firing rates equally
distributed between zero and maximum rate, as would be 0.75,
while if the probability of each response decreased linearly, to
reach zero at the maximum rate, as would be 0.67). If the
spontaneous firing rate was subtracted from the firing rate of the
neuron to each stimulus, so that the changes of firing rate, that is
the active responses of the neurons, were used in the sparseness
calculation, then the ‘response sparseness’ as

r had a lower value,
with a mean of 0.33 for the population of neurons, or 0.60 if
calculated over the set of faces rather than over all the face and
non-face stimuli. Thus the representation was rather distributed.
(It is, of course, important to remember the relative nature of
sparseness measures, which (like the information measures to be
discussed below) depend strongly on the stimulus set used.) Thus
we can reject a cardinal cell representation. As shown below, the
readout of information from these cells is actually much better in
any case than would be obtained from a local representation, and
this makes it unlikely that there is a further population of neurons
with very specific tuning that use local encoding.

These data provide a clear answer to whether these neurons are
grandmother cells: they are not, in the sense that each neuron has a
graded set of responses to the different members of a set of stimuli,
with the prototypical distribution similar to that of the neuron
illustrated in Fig. 6. On the other hand, each neuron does respond
very much more to some stimuli than to many others, and in this
sense is tuned to some stimuli.

Fig. 7 shows data of the type shown in Fig. 6 as firing rate
probability density functions, that is as the probability that the
neuron will be firing with particular rates. These data were from
inferior temporal cortex neurons, and show when tested with a set
of 20 face and non-face stimuli how fast the neuron will be firing in
a period 100–300 ms after the visual stimulus appears (Franco
et al., 2007). Fig. 7a shows an example of a neuron where the data
fit an exponential firing rate probability distribution, with many
occasions on which the neuron was firing with a very low firing
rate, and decreasingly few occasions on which it fired at higher
rates. This shows that the neuron can have high firing rates, but
only to a few stimuli. Fig. 7b shows an example of a neuron where
the data do not fit an exponential firing rate probability
distribution, with insufficiently few very low rates. Of the 41
responsive neurons in this data set, 15 had a good fit to an
exponential firing rate probability distribution; the other 26
neurons did not fit an exponential but did fit a gamma distribution
in the way illustrated in Fig. 7b. For the neurons with an
exponential distribution, the mean firing rate across the stimulus
set was 5.7 spikes/s, and for the neurons with a gamma
distribution was 21.1 spikes/s (t = 4.5, df = 25, p < 0.001). It may
be that neurons with high mean rates to a stimulus set tend to have
few low rates ever, and this accounts for their poor fit to an
exponential firing rate probability distribution, which fits when
there are many low firing rate values in the distribution as in
Fig. 7a.

The large set of 68 stimuli used by Rolls and Tovee (1995)
was chosen to produce an approximation to a set of stimuli that
might be found to natural stimuli in a natural environment, and
thus to provide evidence about the firing rate distribution of
neurons to natural stimuli. Another approach to the same
fundamental question was taken by Baddeley et al. (1997) who
measured the firing rates over short periods of individual inferior
temporal cortex neurons while monkeys watched continuous
videos of natural scenes. They found that the firing rates of the
neurons were again approximately exponentially distributed,
providing further evidence that this type of representation is
characteristic of inferior temporal cortex (and indeed also V1)
neurons.

3.1.3. The typical shape of the firing rate distribution

The actual distribution of the firing rates to a wide set of natural
stimuli is of interest, because it has a rather stereotypical shape,
typically following a graded unimodal distribution with a long tail
extending to high rates (see for example Fig. 7a). The mode of the
distribution is close to the spontaneous firing rate, and sometimes
it is at zero firing. If the number of spikes recorded in a fixed time
window is taken to be constrained by a fixed maximum rate, one
can try to interpret the distribution observed in terms of optimal
information transmission (Shannon, 1948), by making the
additional assumption that the coding is noiseless. An exponential
distribution, which maximizes entropy (and hence information
transmission for noiseless codes) is the most efficient in terms of
energy consumption if its mean takes an optimal value that is a
decreasing function of the relative metabolic cost of emitting a
spike (Levy and Baxter, 1996). This argument would favour sparser
coding schemes the more energy expensive neuronal firing is
(relative to rest). Although the tail of actual firing rate distributions
is often approximately exponential (see for example Fig. 7a;
Baddeley et al. (1997); Rolls et al. (1997c); and Franco et al. (2007)),
the maximum entropy argument cannot apply as such, because
noise is present and the noise level varies as a function of the rate,
which makes entropy maximization different from information
maximization. Moreover, a mode at low but non-zero rate, which is
often observed (see, e.g. Fig. 7b), is inconsistent with the energy
efficiency hypothesis.

A simpler explanation for the characteristic firing rate
distribution arises by appreciating that the value of the activation
of a neuron across stimuli, reflecting a multitude of contributing
factors, will typically have a Gaussian distribution; and by
considering a physiological input–output transform (i.e. activation
function), and realistic noise levels. In fact, an input–output
transform that is supralinear in a range above threshold results
from a fundamentally linear transform and fluctuations in the
activation, and produces a variance in the output rate, across
repeated trials, that increases with the rate itself, consistent with
common observations. At the same time, such a supralinear
transform tends to convert the Gaussian tail of the activation
distribution into an approximately exponential tail, without
implying a fully exponential distribution with the mode at zero.
Such basic assumptions yield excellent fits with observed
distributions (Treves et al., 1999b), which often differ from
exponential in that there are too few very low rates observed,
and too many low rates (Rolls et al., 1997c; Franco et al., 2007).

This peak at low but non-zero rates may be related to the low
firing rate spontaneous activity that is typical of many cortical
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neurons. Keeping the neurons close to threshold in this way may
maximize the speed with which a network can respond to new
inputs (because time is not required to bring the neurons from a
strongly hyperpolarized state up to threshold). The advantage of
having low spontaneous firing rates may be a further reason why a
curve such as an exponential cannot sometimes be exactly fitted to
the experimental data.

A conclusion of this analysis was that the firing rate distribution
may arise from the threshold non-linearity of neurons combined
with short-term variability in the responses of neurons (Treves
et al., 1999b). It is worth noting, however, that for some neurons
the firing rate distribution is approximately exponential, and that
the sparseness of such an exponential distribution of firing rates is
0.5. It is interesting to realize that the representation that is stored
in an associative network may be more sparse than the 0.5 value
for an exponential firing rate distribution, because the non-
linearity of learning introduced by the voltage dependence of the
NMDA receptors effectively means that synaptic modification in,
for example, an autoassociative network will occur only for the
neurons with relatively high firing rates, i.e. for those that are
strongly depolarized (Rolls, 2008).

Franco et al. (2007) showed that while the firing rates of some
single inferior temporal cortex neurons (tested in a visual fixation
task to a set of 20 face and non-face stimuli) do fit an exponential
distribution, and others with higher spontaneous firing rates do not,
as described above, it turns out that there is a very close fit to an
exponential distribution of firing rates if all spikes from all the
neurons are considered together. This interesting result is shown in
Fig. 8. An implication of the result shown in Fig. 8 is that a neuron
with inputs from the inferior temporal visual cortex will receive an
exponential distribution of firing rates on its afferents, and this is
therefore the type of input that needs to be considered in theoretical
models of neuronal network function in the brain (Rolls, 2008).

3.1.4. Population sparseness ap

If instead we consider the responses of a population of neurons
taken at any one time (to one stimulus), we might also expect a
sparse graded distribution, with few neurons firing fast to a
particular stimulus. It is important to measure the population
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sparseness, for this is a key parameter that influences the number
of different stimuli that can be stored and retrieved in networks
such as those found in the cortex with recurrent collateral
connections between the excitatory neurons, which can form
autoassociation or attractor networks if the synapses are
associatively modifiable (Hopfield, 1982; Treves and Rolls, 1991;
Rolls and Treves, 1998; Rolls and Deco, 2002; Rolls, 2008). Further,
in physics, if one can predict the distribution of the responses of the
system at any one time (the population level) from the distribution
of the responses of a component of the system across time, the
system is described as ergodic, and a necessary condition for this is
that the components are uncorrelated, that is, independent (Lehky
et al., 2005). Considering this in neuronal terms, the average
sparseness of a population of neurons over multiple stimulus
inputs must equal the average selectivity to the stimuli of the
single neurons within the population provided that the responses
of the neurons are uncorrelated (Földiák, 2003).

The sparseness ap of the population code may be quantified (for
any one stimulus) as

ap ¼
PN

n¼1 yn=N
� �2

PN
n¼1 y2

n

� �
=N

(24)

where yn is the mean firing rate of neuron n in the set of N neurons.
This measure, ap, of the sparseness of the representation of a

stimulus by a population of neurons has a number of advantages.
One is that it is the same measure of sparseness that has proved to
be useful and tractable in formal analyses of the capacity of
associative neural networks and the interference between stimuli
that use an approach derived from theoretical physics (Rolls and
Treves, 1990, 1998; Treves, 1990; Treves and Rolls, 1991; Rolls,
2008). We note that high values of ap indicate broad tuning of the
population, and that low values of ap indicate sparse population
encoding.

Franco et al. (2007) measured the population sparseness of a set
of 29 inferior temporal cortex neurons to a set of 20 stimuli that
included faces and objects. Fig. 9a shows, for any one stimulus
picked at random, the normalized firing rates of the population of
neurons. The rates are ranked with the neuron with the highest
rate on the left. For different stimuli, the shape of this distribution
is on average the same, though with the neurons in a different
order. (The rates of each neuron were normalized to a mean of
10 spikes/s before this graph was made, so that the neurons can be
combined in the same graph, and so that the population sparseness
has a defined value, as described by Franco et al. (2007).) The
population sparseness ap of this normalized (i.e. scaled) set of firing
rates is 0.77.

Fig. 9b shows the probability distribution of the normalized
firing rates of the population of (29) neurons to any stimulus from
the set. This was calculated by taking the probability distribution of
the data shown in Fig. 9a. This distribution is not exponential
because of the normalization of the firing rates of each neuron, but
becomes exponential as shown in Fig. 8 without the normalization
step.

A very interesting finding of Franco et al. (2007) was that when
the single cell sparseness as and the population sparseness ap were
measured from the same set of neurons in the same experiment,
the values were very close, in this case 0.77. (This was found for a
range of measurement intervals after stimulus onset, and also for a
larger population of 41 neurons.)

The single cell sparseness as and the population sparseness ap

can take the same value if the response profiles of the neurons are
uncorrelated, that is each neuron is independently tuned to the set
of stimuli (Lehky et al., 2005). Franco et al. (2007) tested whether
the response profiles of the neurons to the set of stimuli were
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uncorrelated in two ways. In a first test, they found that the mean
(Pearson) correlation between the response profiles computed
over the 406 neuron pairs was low, 0.049 � 0.013 (sem). In a second
test, they computed how the multiple cell information available from
these neurons about which stimulus was shown increased as the
number of neurons in the sample was increased, and showed that the
information increased approximately linearly with the number of
neurons in the ensemble. The implication is that the neurons convey
independent (non-redundant) information, and this would be
expected to occur if the response profiles of the neurons to the
stimuli are uncorrelated.

3.1.5. Ergodicity

We now consider the concept of ergodicity. The single neuron
selectivity, as, reflects response distributions of individual neurons
across time and therefore stimuli in the world (and has sometimes
been termed ‘‘lifetime sparseness’’). The population sparseness ap

reflects response distributions across all neurons in a population
measured simultaneously (to for example one stimulus). The
similarity of the average values of as and ap (both 0.77 for inferior
temporal cortex neurons (Franco et al., 2007)) indicates, we believe
for the first time experimentally, that the representation (at least in
the inferior temporal cortex) is ergodic. The representation is
ergodic in the sense of statistical physics, where the average of a
single component (in this context a single neuron) across time is
compared with the average of an ensemble of components at one
time (cf. Masuda and Aihara (2003) and Lehky et al. (2005)). This is
described further next.

In comparing the neuronal selectivities as and population
sparsenesses ap, we formed a table in which the columns represent
different neurons, and the stimuli different rows (Földiák, 2003).
We are interested in the probability distribution functions (and not
just their summary values as, and ap), of the columns (which
represent the individual neuron selectivities) and the rows (which
represent the population tuning to any one stimulus). We could
call the system strongly ergodic (cf. Lehky et al. (2005)) if the
selectivity (probability density or distribution function) of each
individual neuron is the same as the average population sparseness
(probability density function). (Each neuron would be tuned to
different stimuli, but have the same shape of the probability
density function.) We have seen that this is not the case, in that the
firing rate probability distribution functions of different neurons
are different, with some fitting an exponential function, and some a
gamma function (see Fig. 7). We can call the system weakly ergodic
if individual neurons have different selectivities (i.e. different
response probability density functions), but the average selectivity
(measured in our case by hasi) is the same as the average
population sparseness (measured by hapi), where hi indicates the
ensemble average. We have seen that for inferior temporal cortex
neurons the neuron selectivity probability density functions are
different (see Fig. 7), but that their average hasi is the same as the
average (across stimuli) hapi of the population sparseness, 0.77,
and thus conclude that the representation in the inferior temporal
visual cortex of objects and faces is weakly ergodic (Franco et al.,
2007).

We note that weak ergodicity necessarily occurs if hasi and hapi
are the same and the neurons are uncorrelated, that is each neuron
is independently tuned to the set of stimuli (Lehky et al., 2005). The
fact that both hold for the inferior temporal cortex neurons studied
by Franco et al. (2007) thus indicates that their responses are
uncorrelated, and this is potentially an important conclusion about
the encoding of stimuli by these neurons. This conclusion is
confirmed by the linear increase in the information with the
number of neurons which is the case not only for this set of neurons
(Franco et al., 2007), but also in other data sets for the inferior
temporal visual cortex (Rolls et al., 1997b; Booth and Rolls, 1998).
Both types of evidence thus indicate that the encoding provided by
at least small subsets (up to, e.g. 20 neurons) of inferior temporal
cortex neurons is approximately independent (non-redundant),
which is an important principle of cortical encoding.

3.1.6. Comparisons of sparseness between areas: the hippocampus,

insula, orbitofrontal cortex, and amygdala

In the study of Franco et al. (2007) on inferior temporal visual
cortex neurons in macaques, the selectivity of individual cells for
the set of stimuli, or single cell sparseness as, had a mean value of
0.77. This is close to a previously measured estimate, 0.65, which
was obtained with a larger stimulus set of 68 stimuli (Rolls and
Tovee, 1995). Thus the single neuron probability density functions
in these areas do not produce very sparse representations.
Therefore the goal of the computations in the inferior temporal
visual cortex may not be to produce sparse representations (as has
been proposed for V1 (Field, 1994; Olshausen and Field, 1997,
2004; Vinje and Gallant, 2000)). Instead one of the goals of the
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computations in the inferior temporal visual cortex may be to
compute invariant representations of objects and faces (Rolls,
2000, 2007, 2008; Rolls and Deco, 2002; Rolls and Stringer, 2006),
and to produce not very sparse distributed representations in order
to maximize the information represented (see Table 2). In this
context, it is very interesting that the representations of different
stimuli provided by a population of inferior temporal cortex
neurons are decorrelated, as shown by the finding that the mean
(Pearson) correlation between the response profiles to a set of 20
stimuli computed over 406 neuron pairs was low, 0.049 � 0.013
(sem) (Franco et al., 2007). The implication is that decorrelation is
being achieved in the inferior temporal visual cortex, but not by
forming a sparse code. It will be interesting to investigate the
mechanisms for this.

In contrast, the representation in some memory systems may
be more sparse. For example, in the hippocampus in which spatial
view cells are found in macaques, further analysis of data described
by Rolls et al. (1998) shows that for the representation of 64
locations around the walls of the room, the mean single cell
sparseness hasi was 0.34 � 0.13 (sd), and the mean population
sparseness ap was 0.33 � 0.11. The more sparse representation is
consistent with the view that the hippocampus is involved in storing
memories, and that for this, more sparse representations than in
perceptual areas are relevant. These sparseness values are for spatial
view neurons, but it is possible that when neurons respond to
combinations of spatial view and object (Rolls et al., 2005), or of
spatial view and reward (Rolls and Xiang, 2005), the representations
are more sparse. It is of interest that the mean firing rate of these
spatial view neurons across all spatial views was 1.77 spikes/s (Rolls
et al., 1998). (The mean spontaneous firing rate of the neurons was
0.1 spikes/s, and the average across neurons of the firing rate for the
most effective spatial view was 13.2 spikes/s.) It is also notable that
weak ergodicity is implied for this brain region too (given the similar
values of hasi and hapi), and the underlying basis for this is that the
response profiles of the different hippocampal neurons to the spatial
views are uncorrelated. Further support for these conclusions is that
the information about spatial view increases linearly with the
number of hippocampal spatial view neurons (Rolls et al., 1998),
again providing evidence that the response profiles of the different
neurons are uncorrelated.

Further evidence is now available on ergodicity in three further
brain areas, the macaque insular primary taste cortex, the
orbitofrontal cortex, and the amygdala. In all these brain areas
sets of neurons were tested with an identical set of 24 oral taste,
temperature, and texture stimuli. (The stimuli were: taste – 0.1 M
NaCl (salt), 1 M glucose (sweet), 0.01 M HCl (sour), 0.001 M
quinine HCl (bitter), 0.1 M monosodium glutamate (umami), and
water; temperature – 108C, 378C and 428C; flavour – blackcurrant
juice; viscosity – carboxymethyl-cellulose 10 cPoise, 100 cPoise,
1000 cPoise and 10000 cPoise; fatty/oily – single cream, vegetable
oil, mineral oil, silicone oil (100 cPoise), coconut oil, and safflower
oil; fatty acids – linoleic acid and lauric acid; capsaicin; and gritty
texture.) Further analysis of data described by Verhagen et al.
(2004) showed that in the primary taste cortex the mean value of as

across 58 neurons was 0.745 and of ap (normalized) was 0.708.
Further analysis of data described by Rolls et al. (2003c), Verhagen
et al. (2003), Kadohisa et al. (2004) and Kadohisa et al. (2005a)
showed that in the orbitofrontal cortex the mean value of as across
30 neurons was 0.625 and of ap was 0.611. Further analysis of data
described by Kadohisa et al. (2005b) showed that in the amygdala
the mean value of as across 38 neurons was 0.811 and of ap was
0.813. Thus in all these cases, the mean value of as is close to that of
ap, and weak ergodicity is implied. The values of as and ap are also
relatively high, implying the importance of representing large
amounts of information in these brain areas about this set of
stimuli by using a very distributed code, and also perhaps about
the stimulus set, some members of which may be rather similar to
each other.

3.1.7. Noise in the brain: the effects of sparseness and of graded

representations

As we have seen, neuronal representations in the cortex have
graded firing rates: the firing rate probability distribution of each
neuron to a set of stimuli is often exponential or gamma. The
graded nature of the representation is also evident in the range of
firing rates in different neurons produced by a given stimulus
(Fig. 9).

In processes in the brain such as decision-making, memory
recall, and the maintenance of short-term memory, that are
influenced by the noise produced by the close to random (Poisson)
spike timings of each neuron for a given mean firing rate (Rolls and
Deco, 2010; Rolls, 2008), the noise with this graded type of
representation may be larger than with the uniform binary firing
rate distribution that is usually investigated in theoretic analyses.

In integrate-and-fire simulations of an attractor decision-
making network, Webb et al. (2011) showed that the noise is
indeed greater for a given sparseness of the representation for
graded, exponential, than for binary firing rate distributions. The
greater noise was measured by faster escaping times from the
spontaneous firing rate state when the decision cues are applied,
and this corresponds to faster decision or reaction times. The
greater noise was also evident as less stability of the spontaneous
firing state before the decision cues are applied. The implication is
that noise in the brain will continue to be a factor that influences
processes such as decision-making, signal detection, short-term
memory, and memory recall even with the quite large networks
found in the cerebral cortex with several thousand recurrent
collateral synapses onto each neuron. The greater noise with
graded firing rate distributions has the advantage that it can
increase the speed of operation of cortical circuitry. Noise in the
brain has many other advantages (Rolls and Deco, 2010).

Conceptually, one can think that with graded firing rate
distributions, a small number of neurons are made more important
through their stronger weights and higher firing rates, noting that
the variance of a Poisson process is equal to its mean. The influence
of the few most highly firing neurons through their particularly
strong synaptic weights on other neurons will have the effect of
increasing the statistical fluctuations, which will be dominated by
the relatively small number of highly firing neurons, and their
possibly strong effects on a few other neurons with particularly
strong synaptic weights from those highly firing neurons.

In the same way, making a representation more sparse
(decreasing a) also increases the noise (stochastic fluctuations)
due to finite size effects with spiking neurons (Webb et al., 2011).
The diluted connectivity of the cerebral (including hippocampal)
cortex has the effect of reducing the noise in integrate and fire
attractor neuronal networks, but noise still remains in networks of
biologically plausible size (Rolls and Webb, 2011).

We emphasize that it is important to understand the effects of
noise in networks in the brain, and its implications for the stability
of neuronal networks in the brain. For example, a stochastic
neurodynamical approach to schizophrenia holds that there is less
stability of cortical attractor networks involved in short-term
memory and attention due to reduced functioning of the glutamate
system, which decreases the firing rates of neurons in the
prefrontal cortex, and therefore the depth of the basins of
attraction, and thus the stability and signal-to-noise ratio given
the spiking-related noise that is present. This it is suggested
contributes to the cognitive changes in schizophrenia, which
include impaired short-term memory and attention (Loh et al.,
2007; Rolls et al., 2008b; Rolls and Deco, 2011). In another
example, a stochastic neurodynamical approach to obsessive
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compulsive disorder suggests that there is overstability in some
networks in the prefrontal cortex and connected areas due to
hyperglutamatergia (Rolls et al., 2008a; Rolls, 2011c). In both these
cases, and also in normal brain function in relation to decision-
making, memory recall, etc, it is important to know to what extent
noise contributed by randomness in the spiking times of individual
neurons for a given mean rate contributes to stochastic effects
found in the brain which affect decision-making, stability, and
which may if the stability is disturbed contribute to neuropsychi-
atric disorders (Rolls and Deco, 2010). In this context, the findings
described in this paper are important for understanding normal
and disordered brain function.

3.2. Sensory information from single neurons

An example of the responses of a single neuron (in this case in
the inferior temporal visual cortex) to sets of objects and/or faces is
shown in Fig. 6. We now consider how much information these
types of neuronal response convey about the set of stimuli S, and
about each stimulus s in the set. The mutual information I(S, R) that
the set of responses R encode about the set of stimuli S is calculated
with Eq. (5) and corrected for the limited sampling using the
analytic bias correction procedure described by Panzeri and Treves
(1996) as described in detail by Rolls et al. (1997c). The
information I(s, R) about each single stimulus s in the set S,
termed the stimulus-specific information (Rolls et al., 1997c) or
stimulus-specific surprise (DeWeese and Meister, 1999), obtained
from the set of the responses R of the single neuron is calculated
with Eq. (6) and corrected for the limited sampling using the
analytic bias correction procedure described by Panzeri and Treves
(1996) as described in detail by Rolls et al. (1997c). (The average of
I(s, R) across stimuli is the mutual information I(S, R).)

Fig. 10 shows the stimulus-specific information I(s, R) available
in the neuronal response about each of 20 face stimuli calculated
for the neuron (am242) whose firing rate response profile to the set
of 65 stimuli is shown in Fig. 6.

Unless otherwise stated, the information measures given are for
the information available on a single trial from the firing rate of the
neuron in a 500 ms period starting 100 ms after the onset of the
stimuli. It is shown in Fig. 10 that 2.2, 2.0, and 1.5 bits of
information were present about the three face stimuli to which the
Fig. 10. The stimulus-specific information I(s, R) available in the response of the

same single neuron as in Fig. 6 about each of the stimuli in the set of 20 face stimuli

(abscissa), with the firing rate of the neuron to the corresponding stimulus plotted

as a function of this on the ordinate. The horizontal line shows the mean firing rate

across all stimuli.

From Rolls et al. (1997c).
neuron had the highest firing rate responses. The neuron conveyed
some but smaller amounts of information about the remaining face
stimuli. The average information I(S, R) about this set (S) of 20 faces
for this neuron was 0.55 bits. The average firing rate of this neuron
to these 20 face stimuli was 54 spikes/s. It is clear from Fig. 10 that
little information was available from the responses of the neuron
to a particular face stimulus if that response was close to the
average response of the neuron across all stimuli. At the same time,
it is clear from Fig. 10 that information was present depending on
how far the firing rate to a particular stimulus was from the
average response of the neuron to the stimuli. Of particular
interest, it is evident that information is present from the neuronal
response about which face was shown if that neuronal response
was below the average response, as well as when the response was
greater than the average response.

The information I(s, R) about each stimulus in the set of 65
stimuli is shown in Fig. 11 for the same neuron, am242. The 23 face
stimuli in the set are indicated by a diamond, and the 42 non-face
stimuli by a cross. Using this much larger and more varied stimulus
set, which is more representative of stimuli in the real world, a C-
shaped function again describes the relation between the
information conveyed by the cell about a stimulus and its firing
rate to that stimulus.

In particular, this neuron reflected information about most, but
not all, of the faces in the set, that is those faces that produced a
higher firing rate than the overall mean firing rate to all the 65
stimuli, which was 31 spikes/s. In addition, it conveyed informa-
tion about the majority of the 42 non-face stimuli by responding at
a rate below the overall mean response of the neuron to the 65
stimuli. This analysis usefully makes the point that the information
available in the neuronal responses about which stimulus was
shown is relative to (dependent upon) the nature and range of
stimuli in the test set of stimuli.

This evidence makes it clear that a single cortical visual neuron
tuned to faces conveys information not just about one face, but
about a whole set of faces, with the information conveyed on a
single trial related to the difference in the firing rate response to a
particular stimulus compared to the average response to all
stimuli.

The analyses just described for neurons with visual responses
are general, in that they apply in a very similar way to olfactory
Fig. 11. The information I(s, R) available in the response of the same neuron about

each of the stimuli in the set of 23 face and 42 non-face stimuli (abscissa), with the

firing rate of the neuron to the corresponding stimulus plotted as a function of this

on the ordinate. The 23 face stimuli in the set are indicated by a diamond, and the 42

non-face stimuli by a cross. The horizontal line shows the mean firing rate across all

stimuli.

After Rolls et al. (1997c).



E.T. Rolls, A. Treves / Progress in Neurobiology 95 (2011) 448–490 465
neurons recorded in the macaque orbitofrontal cortex (Rolls et al.,
1996).

The neurons in this sample reflected in their firing rates for the
post-stimulus period 100–600 ms on average 0.36 bits of mutual
information about which of 20 face stimuli was presented (Rolls
et al., 1997c). Similar values have been found in other experiments
(Tovee et al., 1993; Tovee and Rolls, 1995; Rolls et al., 1999, 2006).
The information in short temporal epochs of the neuronal
responses is described in Sections 2.3 and 3.2.5.

3.2.1. The information from single neurons: temporal codes vs. rate

codes

With a firing rate code the number of spikes in a given time
window is relevant. The temporal structure of the spikes within the
time window might carry additional information (Rieke et al.,
1997; Rolls, 2008; Panzeri et al., 2010). Although the timing of the
spikes of neurons is known to code for time-varying features of a
sensory stimulus (Panzeri et al., 2010), it is a more fundamental
issue about whether time is exploited in the neuronal coding of
(static) objects or the spatial structure of the environment, where
non-time-varying stimulus features are present.

In the third of a series of papers that analyze the response of
single neurons in the primate inferior temporal cortex to a set of
static visual stimuli, Optican and Richmond (1987) applied
information theory in a particularly direct and useful way. To
ascertain the relevance of stimulus-locked temporal modula-
tions in the firing of those neurons, they compared the amount
of information about the stimuli that could be extracted from
just the firing rate, computed over a relatively long interval of
384 ms, with the amount of information that could be extracted
from a more complete description of the firing, which included
temporal modulation. To derive this latter description (the
temporal code within the spike train of a single neuron) they
applied principal component analysis (PCA) to the temporal
response vectors recorded for each neuron on each trial. The PCA
helped to reduce the dimensionality of the neuronal response
measurements. A temporal response vector was defined as a
vector with as components the firing rates in each of 64
successive 6 ms time bins. The (64 � 64) covariance matrix was
calculated across all trials of a particular neuron, and diagonal-
ized. The first few eigenvectors of the matrix, those with the
largest eigenvalues, are the principal components of the
response, and the weights of each response vector on these
four to five components can be used as a reduced description of
the response, which still preserves, unlike the single value giving
the mean firing rate during the entire interval, the main features
of the temporal modulation within the interval. Thus a four- to
five-dimensional temporal code could be contrasted with a one-
dimensional rate code, and the comparison made quantitative
by measuring the respective values for the mutual information
with the stimuli.

Although the initial claim (Optican et al., 1991; Eskandar et al.,
1992), that the temporal code carried nearly three times as much
information as the rate code, was later found to be an artefact of
limited sampling, and more recent analyses tend to minimize the
additional information in the temporal description (Tovee et al.,
1993; Heller et al., 1995), this type of application has immediately
appeared straightforward and important, and it has led to many
developments. By concentrating on the code expressed in the
output rather than on the characterization of the neuronal channel
itself, this approach is not affected much by the potential
complexities of the preceding black box. Limited sampling, on
the other hand, is a problem, particularly because it affects much
more codes with a larger number of components, for example the
four to five components of the PCA temporal description, than the
one-dimensional firing rate code. This is made evident in the paper
by Heller et al. (1995), in which the comparison is extended to
several more detailed temporal descriptions, including a binary
vector description in which the presence or not of a spike in each
1 ms bin of the response constitutes a component of a 320-
dimensional vector. Obviously, this binary vector must contain at
least all the information present in the reduced descriptions,
whereas in the results of Heller et al. (1995), despite the use of a
sophisticated neural network procedure to control limited
sampling biases, the binary vector appears to be the code that
carries the least information of all. In practice, with the data
samples available in the experiments that have been done, and
even when using analytic procedures to control limited sampling
(Panzeri and Treves, 1996), reliable comparison can be made only
with up to two- to three-dimensional codes.

Tovee et al. (1993) and Tovee and Rolls (1995) obtained further
evidence that little information was encoded in the temporal
aspects of firing within the spike train of a single neuron in the
inferior temporal cortex by taking short epochs of the firing of
neurons, lasting 20 ms or 50 ms, in which the opportunity for
temporal encoding would be limited (because there were few
spikes in these short time intervals). They found that a consider-
able proportion (30%) of the information available in a long time
period of 400 ms utilizing temporal encoding within the spike train
was available in time periods as short as 20 ms when only the
number of spikes was taken into account.

Overall, the main result of these analyses applied to the
responses to static stimuli in the temporal visual cortex of
primates is that not much more information (perhaps only up to
10% more) can be extracted from temporal codes than from the
firing rate measured over a judiciously chosen interval (Tovee
et al., 1993; Heller et al., 1995). Indeed, it turns out that even this
small amount of ‘temporal information’ is related primarily to the
onset latency of the neuronal responses to different stimuli, rather
than to anything more subtle (Tovee et al., 1993). In the primary
visual cortex response latency and the number of spikes can
similarly be partly independent, with latency more closely coding
contrast or visibility (thus relating to the magnitude of the
stimulus), and the number of spikes coding the stimulus
orientation, or perhaps shape, that is the parameters of the
stimuli to which the neuron is tuned (Richmond et al., 1997). A
similar conclusion was reached about the information available
about stimulus location in the rat somatosensory cortex (Panzeri
et al., 2001a). In earlier visual areas than IT the additional
‘temporally encoded’ fraction of information may be larger, due
especially to the increased relevance, earlier on, of precisely
locked transient responses (Kjaer et al., 1994; Golomb et al., 1994;
Heller et al., 1995; Victor, 2000; Panzeri et al., 2010). This is
because if the responses to some stimuli are more transient and to
others more sustained, or the onset latencies are different, this
will result in more information if the temporal modulation of the
response of the neuron is taken into account. This may however
imply external knowledge of when a stimulus is presented, so that
response latency can be used, and this is not likely to be available
with natural visual stimuli in a natural setting.

In addition, the relevance for static (non-time-varying) visual
stimuli of more substantial temporal codes involving for example
particular spike patterns for particular stimuli remains to be
demonstrated (Richmond, 2009). In particular, a strong null
hypothesis that can be applied is that spike trains arise from
stochastic sampling of an underlying deterministic temporally
modulated rate function, that is, there is a time-varying rate
function. In this view, order statistics seem to provide a sufficient
theoretical construct to both generate simulated spike trains that
are indistinguishable from those observed experimentally, and to
evaluate (decode) the data recovered from experiments (Rich-
mond, 2009). The implication of this view is that firing rates may
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stochastically reflect a time-evolving process, but that there is
nothing beyond this that has so far been demonstrated to be
important about the temporal nature of the spikes elicited by a
neuron to a set of stimuli, at least in well-studied systems in
primates (Richmond, 2009).

For non-static visual stimuli and for other cortical systems,
similar analyses have largely yet to be carried out, although clearly
one expects to find more prominent temporal effects with at least
the firing rate rapidly reflecting the changing stimuli in, e.g. the
auditory system (Nelken et al., 1994; deCharms and Merzenich,
1996), for reasons similar to those just annunciated (Panzeri et al.,
2010). However, because the firing rate code is fast in that much of
the information available can be transmitted in time periods as
short as 20 ms (Tovee and Rolls, 1995; Rolls et al., 1999, 2006), the
firing rate code can follow stimuli that change rapidly in time, as in
a movie, with different subsets of neurons active as the stimuli vary
in time. In the auditory cortex, where time-related information is
relevant to the time-varying sound, the pattern of spikes may carry
extra information to that in the rates, though with biologically
relevant timescales of postsynaptic potentials and membrane time
constants, spike rate and phase rather than pattern are more
informative (Kayser et al., 2009; Panzeri et al., 2010). Further
discussion of coding in temporal response patterns of neurons to
different stimuli is provided elsewhere (Victor, 2000; Panzeri et al.,
2010).

3.2.2. Oscillations and phase coding

In this and the next section we consider how oscillations, either
within a population of neurons, or between populations of
neurons, influence the information that (as we have seen) is
encoded and transmitted primarily in the number of spikes (Deco
and Rolls, in preparation). The concept we develop is that because
of the non-linear properties of neurons including the threshold for
generating a spike, oscillations can influence the number of spikes
that are produced within a population of neurons, or the speed
with which they are transmitted between populations of neurons
where the oscillations are in phase. We show how this can affect
the speed of operation of neuronal networks, and information
transmission between different networks.

The spike timing of hippocampal place neurons becomes earlier
with respect to the theta oscillation cycle the further a rat has
moved through the place field, and this phase precession can thus
reflect the distance travelled through the place field (Huxter et al.,
2003, 2008; Jensen and Lisman, 2000). Some information may in
this way be encoded by the spike times of a neuron relative to the
phase of an oscillation, a concept referred to as Phase-of-Firing
Coding (O’Keefe and Burgess, 2005; Montemurro et al., 2008;
Panzeri et al., 2010).

In the ventral visual cortical stream where short fixations are
typically used to analyze stationery objects, the phase of firing in
the gamma cycle appears to be redundant with respect to the firing
rate (Vinck et al., 2010), but with rapidly timevarying stimuli in the
auditory cortex and visual system, spike timing would be expected
to be important, and indeed the phase of firing relative to slow (4–
8 Hz) (Kayser et al., 2009; Panzeri et al., 2010) or faster (gamma,
60 Hz) (Koepsell et al., 2010) oscillations evident in local field
potentials (LFPs) provides information additional to that in the
firing rates.

In addition, short term memory encoding can be influenced by
the phase of firing with respect to slow LFP oscillations (Lee et al.,
2005; Siegel et al., 2009). The time of spike arrival relative to
subthreshold membrane oscillations (SMO) in the postsynaptic
neuron has been modeled as a possible way of encoding
information (Nadasdy, 2010).

However, whether the neural firing relative to the phase angle
is used to transmit that information for use by the brain remains to
be shown, and if so, how much information this provides that is
additional to the great deal of information in the neuronal
population firing rate code (Section 3.3 and Fig. 18).

3.2.3. Oscillations and communication through coherence

Mechanisms through which oscillations that are coherent (i.e.
of the same frequency and in a particular phase) can influence the
speed of decision-making and of information transmission using
‘‘communication through coherence’’ (Fries, 2005, 2009) are
illustrated in Fig. 12 and include the following (Deco and Rolls,
in preparation).

One effect that oscillations can have is to speed information
processing within a single network by increasing the mean spike
count, that is the firing rate, of neurons, across both long time
windows, and within shorter times within an oscillation period
(Fig. 12a) (Smerieri et al., 2010). This was illustrated in an
integrate-and-fire attractor neuronal network model of decision-
making which normally operates without oscillations, and
accounts for many aspects of decision-making in the brain at
the neuronal and functional neuroimaging levels (Deco and Rolls,
2006; Wang, 2008, 2010; Rolls et al., 2010b,c). However, if the
simulated network was made to oscillate at theta/delta
frequencies (2–8 Hz) by introducing a second population of
inhibitory interneurons with a longer synaptic time constant of
100 ms, then it was found that the decision times of the network
were faster (Smerieri et al., 2010). One way in which the
oscillations decreased the reaction times is illustrated in Fig. 12a.
Because of the non-linearity of the neurons, which are typically
held close to but on average a little below their firing threshold,
the effect of the oscillations in the positive half cycle was to
depolarize the neurons, which resulted in more spikes in total
and bunched together within part of an oscillation cycle than
would occur without oscillations. Given that with more spikes
this class of attractor network tends to make decisions faster, as
it is pushed more rapidly towards one of the high firing rate
attractors due to the recurrent collateral positive feedback, the
shorter reaction times are accounted for by the extra spike counts
or firing rate (Rolls and Deco, 2010; Rolls et al., 2010c). Thus in
this way oscillations can act through influencing firing rates to
affect the properties of networks in the brain (Smerieri et al.,
2010).

This type of effect applies not only to decision-making, but also
to many operations supported by recurrent collateral excitatory
connections in the neocortex, including memory recall, and the
stability of short-term memory and attention (Rolls, 2008; Rolls
and Deco, 2010). The effect of the oscillations in this case is like
adding noise in the process known as stochastic resonance (Rolls
and Deco, 2010). This leads to:

Principle 1: Oscillations interacting with the non-linearity of
action potential generation can increase the number of spikes
within short time intervals within an oscillation cycle and
potentially in total, and this can increase the speed of processing
in neural networks involved in decision-making, memory recall,
etc, which are sensitive to the number of spikes received.

A second mechanism by which oscillations may affect
information transmission is illustrated in Fig. 12b, and leads to:

Principle 2: Oscillations can increase the speed of processing by
synchronizing spikes, leading to more rapid action potential
generation.

This principle was illustrated in an integrate-and-fire biased
competition model of attention in which it was shown that
although modulation by the top-down bias of the firing rate was
sufficient to implement attention, the reaction time was shorter if
gamma oscillations (induced by altering the gAMPA /gNMDA
conductance ratio for the synaptically activated ion channels) were
present (Buehlmann and Deco, 2008). (The mechanism described



Fig. 12. Principles by which synchronicity and oscillations can influence neural processing. (a) Oscillations may lead to more spikes. The membrane potential of a single

integrate-and-fire neuron in response to currents applied at slow (5 Hz) and at fast (50 Hz) frequencies and with identical amplitudes. The frequency was changed at

time = 500 ms, and its time course is shown by the sinusoidal waveform (black line). The membrane time constant gL was 20 ms. The membrane potential shows a larger

modulation with the low than with the high frequency input. This effect is produced by the filtering effect produced by the membrane time constant, which acts as a low pass

filter, with smaller effects therefore produced by the higher frequency of 50 Hz. Depending on the average membrane potential produced by other inputs to the neuron, the

larger modulation of the membrane potential produced by low frequencies may produce more action potentials with the low than with the high frequencies, as illustrated, or

when the membrane potential oscillates than when there are no oscillations (after Smerieri et al., 2010). (b) Synchronous spikes from different sources (below) may speed

neuronal responses compared to asynchronous spikes (above). V is the membrane potential of an integrate-and-fire neuron (IF). The time taken to reach the threshold for

firing is T’ vs. T (after Deco and Rolls, in preparation). (c) The communication-through-coherence (CTC) theory suggests that effective connections in a network can be shaped

through phase relations (Fries, 2005, 2009). The neurons inside the pools A, B and C are rhythmically synchronized as indicated by the sinusoidal background LFP and the

spikes (vertical red bars) around the peaks. Pools A and B are in phase and therefore the interchange of spikes is more effective, and more information is transmitted. On the

other hand, pools B and C are in anti-phase and therefore fewer spikes are produced in the receiving population, and less information is transmitted (after Fries, 2005, 2009).
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in Principle 1 may also have contributed to the effects found (Deco
and Rolls, in preparation).)

A third mechanism is illustrated in Fig. 12c, and leads (Fries,
2005, 2009) to:

Principle 3: Cortical coherence is a mechanism that can
influence the transmission of information between neuronal
populations: the communication-through-coherence (CTC) hy-
pothesis.

To investigate how the synchronization might influence
communication, multi-unit activity (MUA) recorded simulta-
neously from 4 to 8 electrodes in cats’ area 17, 18 and 21, and
monkeys’ area V1 and V4 was analyzed (Womelsdorf et al., 2007).
For each pair of neuronal recordings, the synchronization was
quantified by the MUA-MUA phase coherence spectrum, which
showed a peak in the gamma frequency band close to 60 Hz. The
strength of the interaction between two pairs, measured by the
correlation between the two signals’ power across trials, showed
that this was on average across pairs highest when the phase lag
between the pairs was zero. The authors suggested that the
functional interactions between nodes in a network can be
maximized if the phase relation is close to 0, and is lower at
other phase relations, but did not elaborate on the mechanism
(Womelsdorf et al., 2007).

One possibility we suggest is that if a synaptic input from a
synchronized area arrives when a pyramidal cell is relatively
depolarized because of an oscillation in-phase with the connected
area, then the pyramidal cell might respond more, because of the
threshold and then rapidly rising part of its activation function.
(The activation function is the relation between the firing rate of
the neuron and the depolarization caused by the synaptic inputs to
the neuron, and this includes the non-linearity due to the threshold
for firing of the neuron (Rolls, 2008).) If a synaptic input arrived out
of phase, we suggest that its efficacy would be reduced because of
shunting inhibition on the neurons receiving the input. Thus the
efficacy of the spikes, which encode information as described
above, in transmitting information may be influenced by
synchronization, but the magnitude of the effect needs to be
quantified, in ways that are suggested below.

The CTC hypothesis has been studied with a computational
neuroscience approach with an integrate-and-fire neuronal
network model with interacting populations of neurons (Buehl-
mann and Deco, 2010). The ‘power correlation’ had its maximum
on average when the phase shift between the populations was 0.
The transfer entropy (TE, an information theoretic measure
described elsewhere (Buehlmann and Deco, 2010) which reflects
the directionality of interactions by taking into account the firing
rate in the other pool at a previous time step), also showed that on
average there was strongest coupling between the populations at 0
phase shift. These effects could be obtained in the model in the beta
as well as the gamma oscillation band.

The neurophysiological and modelling investigations just
described suggest that neuronal populations influence one another
most strongly if they oscillate at 0 phase shift, that is if they are
synchronised as schematized in Fig. 12c (Fries, 2005, 2009;
Womelsdorf et al., 2007; Buehlmann and Deco, 2010). We suggest
that what needs to be tested next is whether information
transmission between the two networks is facilitated if they are
synchronized. This could be performed by using a set of stimuli S as



Fig. 13. The average information I(S,R) available in short temporal epochs (20 ms

and 100 ms) of the spike trains of single inferior temporal cortex neurons about

which face had been shown.

From Tovee and Rolls (1995).
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the input to one of the networks, and measuring whether the
mutual information at the output of the second network about
which stimulus was presented is greatest when the two networks
are synchronized. It is likely that information transmission
between neuronal populations is enhanced if both the frequency
and phase of the two populations correspond, and this might make
such transmission selective with respect to for example distracting
stimuli (Akam and Kullmann, 2010). However, even this process
may only work if the interfering stimuli are kept in separate
frequency and phase bands (Akam and Kullmann, in press).

This raises the possibility, sometimes implied (Fries, 2005,
2009; Womelsdorf et al., 2007), that controlling which brain areas
are synchronized might control the flow of information in the
brain. That might be a mechanism of for example selective
attention (Womelsdorf et al., 2007). However, what might be the
external controller of synchronization? We are sceptical that there
is one. Instead, we propose that oscillations arise as a result of the
complex dynamics of cortical networks in which the ratios of
synaptic conductances are a key to whether oscillations occur
(Brunel and Wang, 2003; Smerieri et al., 2010; Buehlmann and
Deco, 2010). Oscillations may then be more likely to occur
synchronously when areas or neuronal populations are connected
by strong synapses, and the neurons in both areas are simulta-
neously active, and especially when the firing is in phase the
oscillations may reinforce each other because cortical areas
typically have forward and backward connections (Rolls, 2008).
Thus the synchronization may just result from the functional
architecture of the cerebral cortex, and arise as a result of it being
designed for other functions such as memory recall, short-term
memory, attention, and decision-making, all of which can occur
mechanistically in the brain without oscillations (Rolls, 2008; Rolls
and Deco, 2010; Deco and Rolls, in preparation).

3.2.4. Oscillations can reset a network

A fourth mechanism by which oscillations may influence
neuronal firing and neuronal encoding is by resetting neuronal
activity. For example, a process such as memory recall may occur
within a single theta cycle, and then be quenched so that a new
attempt at recall can be made in the next theta cycle. This has the
potential advantage that in a changing, ambiguous, or uncertain
situation, several attempts can be made at the memory recall,
without previous attempts dominating the memory state for a
period due to attractor dynamics in autoassociation networks
(Rolls and Treves, 1998, p. 118). Effects consistent with this
prediction have recently been observed in the rat hippocampus
(Jezek et al., 2011): in response to an instantaneous transition
between two familiar and similar spatial contexts, hippocampal
neurons in one theta cycle indicated one place, and in another
theta cycle another place. These findings indicate that, in
hippocampal CA3, pattern-completion dynamics can occur within
each individual theta cycle. Reset, with potentially different recall
in different theta cycles, may facilitate rapid updating and
correction of recall. This leads to:

Principle 4: Autoassociative recall may occur in a single theta
cycle, with reset and different recall in the next theta cycle.

3.2.5. The speed of information transfer by single neurons

Taking into account the points made in Section 2.3, Tovee et al.
(1993) and Tovee and Rolls (1995) measured the information
available in short epochs of the firing of single neurons, and found
that a considerable proportion of the information available in a
long time period of 400 ms was available in time periods as short as
20 ms and 50 ms. For example, in periods of 20 ms, 30% of the
information present in 400 ms using temporal encoding with the
first three principal components was available. Moreover, the
exact time when the epoch was taken was not crucial, with the
main effect being that rather more information was available if
information was measured near the start of the spike train, when
the firing rate of the neuron tended to be highest (see Fig. 13). The
conclusion was that much information was available when
temporal encoding could not be used easily, that is in very short
time epochs of 20 or 50 ms.

It is also useful to note from Figs. 13 and 5 the typical time
course of the responses of many temporal cortex visual neurons in
the awake behaving primate. Although the firing rate and
availability of information is highest in the first 50–100 ms of
the neuronal response, the firing is overall well sustained in the
500 ms stimulus presentation period. Cortical neurons in the
primate temporal lobe visual system, in the taste cortex (Rolls
et al., 1990), and in the olfactory cortex (Rolls et al., 1996), do not in
general have rapidly adapting neuronal responses to sensory
stimuli. This may be important for associative learning: the
outputs of these sensory systems can be maintained for sufficiently
long while the stimuli are present for synaptic modification to
occur. Although rapid synaptic adaptation within a spike train is
seen in some experiments in brain slices (Markram and Tsodyks,
1996; Abbott et al., 1997), it is not a very marked effect in at least
some brain systems in vivo, when they operate in normal
physiological conditions with normal levels of acetylcholine, etc
(Rolls, 2008).

3.2.6. Masking, information, and consciousness

To pursue this issue of the speed of processing and information
availability even further, Rolls et al. (1994) and Rolls and Tovee
(1994) limited the period for which visual cortical neurons could
respond by using backward masking. In this paradigm, a short
(16 ms) presentation of the test stimulus (a face) was followed
after a delay of 0, 20, 40, 60 ms, etc. by a masking stimulus (which
was a high contrast set of letters) (see Fig. 14). They showed that
the mask did actually interrupt the neuronal response, and that at
the shortest interval between the stimulus and the mask (a delay of
0 ms, or a ‘Stimulus Onset Asynchrony’ of 20 ms), the neurons in
the temporal cortical areas fired for approximately 30 ms (see
Fig. 15). Under these conditions, the subjects could identify which
of five faces had been shown much better than chance.
Interestingly, under these conditions, when the inferior temporal
cortex neurons were firing for 30 ms, the subjects felt that they
were guessing, and conscious perception was minimal (Rolls et al.,



Fig. 14. Backward masking paradigm. The visual stimulus appeared at time 0 for

16 ms. The time between the start of the visual stimulus and the masking image is

the Stimulus Onset Asynchrony (SOA). A visual fixation task was being performed to

ensure correct fixation of the stimulus. In the fixation task, the fixation spot

appeared in the middle of the screen at time �500 ms, was switched off 100 ms

before the test stimulus was shown, and was switched on again at the end of the

mask stimulus. Then when the fixation spot dimmed after a random time, fruit juice

could be obtained by licking. No eye movements could be performed after the onset

of the fixation spot.

After Rolls and Tovee (1994).

Fig. 15. Firing of a temporal cortex cell to a 20 ms presentation of a face stimulus

when the face was followed with different stimulus onset asynchronies (SOAs) by a

masking visual stimulus. At an SOA of 20 ms, when the mask immediately followed

the face, the neuron fired for only approximately 30 ms, yet identification above

change (by ‘guessing’) of the face at this SOA by human observers was possible.

After Rolls and Tovee (1994) and Rolls et al. (1994).
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1994), the neurons conveyed on average 0.10 bits of information
(Rolls et al., 1999). With a stimulus onset asynchrony of 40 ms,
when the inferior temporal cortex neurons were firing for 50 ms,
not only did the subjects’ performance improve, but the stimuli
were now perceived clearly, consciously, and the neurons
conveyed on average 0.16 bits of information. This has contributed
to the view that consciousness has a higher threshold of activity in

a given pathway, in this case a pathway for face analysis, than does
unconscious processing and performance using the same pathway
(Rolls, 2003, 2006, 2011a).

3.2.7. First spike codes

The issue of how rapidly information can be read from neurons
is crucial and fundamental to understanding how rapidly memory
systems in the brain could operate in terms of reading the code
from the input neurons to initiate retrieval, whether in a pattern
associator or autoassociation network (Rolls, 2008; Rolls and Deco,
2010). This is also a crucial issue for understanding how any stage
of cortical processing operates, given that each stage includes
associative or competitive network processes that require the code
to be read before it can pass useful output to the next stage of
processing (see Rolls (2008); Rolls and Deco (2002); and Panzeri
et al. (2001b)). For this reason, we have performed further analyses
of the speed of availability of information from neuronal firing, and
the neuronal code. A rapid readout of information from any one
stage of for example visual processing is important, for the ventral
visual system is organized as a hierarchy of cortical areas, and the
neuronal response latencies are approximately 100 ms in the
inferior temporal visual cortex, and 40–50 ms in the primary visual
cortex, allowing only approximately 50–60 ms of processing time
for V1–V2–V4–inferior temporal cortex (Baylis et al., 1987; Nowak
and Bullier, 1997; Rolls and Deco, 2002). There is much evidence
that the time required for each stage of processing is relatively
short. For example, in addition to the evidence already presented,
visual stimuli presented in succession approximately 15 ms apart
can be separately identified (Keysers and Perrett, 2002); and the
reaction time for identifying visual stimuli is relatively short and
requires a relatively short cortical processing time (Rolls, 2003;
Bacon-Mace et al., 2005).
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In this context, Delorme and Thorpe (2001) have suggested that
just one spike from each neuron is sufficient, and indeed it has been
suggested that the order of the first spike in different neurons may
be part of the code (Delorme and Thorpe, 2001; Thorpe et al., 2001;
VanRullen et al., 2005). (Implicit in the spike order hypothesis is
that the first spike is particularly important, for it would be difficult
to measure the order for anything other than the first spike.) An
alternative view is that the number of spikes in a fixed time
window over which a postsynaptic neuron could integrate
information is more realistic, and this time might be in the order
of 20 ms for a single receiving neuron, or much longer if the
receiving neurons are connected by recurrent collateral associative
synapses and so can integrate information over time (Deco and
Rolls, 2006; Rolls and Deco, 2002; Panzeri et al., 2001b). Although
the number of spikes in a short time window of, e.g. 20 ms is likely
to be 0, 1, or 2, the information available may be more than that
from the first spike alone, and Rolls et al. (2006) examined this by
measuring neuronal activity in the inferior temporal visual cortex,
and then applying quantitative information theoretic methods to
measure the information transmitted by single spikes, and within
short time windows.

The cumulative single cell information about which of the
twenty stimuli was shown from all spikes and from the first spike
starting at 100 ms after stimulus onset is shown in Fig. 16. A period
of 100 ms is just longer than the shortest response latency of the
neurons from which recordings were made, so starting the
measure at this time provides the best chance for the single spike
measurement to catch a spike that is related to the stimulus. The
means and standard errors across the 21 different neurons are
shown. The cumulated information from the total number of
spikes is larger than that from the first spike, and this is evident and
significant within 50 ms of the start of the time epoch. In
calculating the information from the first spike, just the first
spike in the analysis window starting in this case at 100 ms after
stimulus onset was used.

Because any one neuron receiving information from the
population being analyzed has multiple inputs, we show in
Fig. 17 the cumulative information that would be available from
multiple cells (21) about which of the 20 stimuli was shown, taking
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both the first spike after the time of stimulus onset (0 ms), and the
total number of spikes after 0 ms from each neuron. The
cumulative information even from multiple cells is much greater
when all the spikes rather than just the first spike are used.

These and many further results thus show that although
considerable information is present in the first spike, more
information is available under the more biologically realistic
assumption that neurons integrate spikes over a short time
window (depending on their time constants) of for example 20 ms
(Rolls et al., 2006). Moreover, the order of spike arrival times from
different neurons did not convey significant extra information to
that available from the firing rates in short periods (Rolls et al.,
2006).

The conclusions from the single cell information analyses are
thus that most of the information is encoded in the spike count;
that large parts of this information are available in short temporal
epochs of, e.g. 20 ms or 50 ms; and that any additional information
which appears to be temporally encoded is related to the latency of
the neuronal response, and reflects sudden changes in the visual
stimuli. Therefore a neuron in the next cortical area would obtain
considerable information within 20–50 ms by measuring the firing
rate of a single neuron. Moreover, if it took a short sample of the
firing rate of many neurons in the preceding area, then very much
information is made available in a short time, as shown above and
in Section 3.3.

3.3. Sensory information from multiple cells: independent

information vs. redundancy

3.3.1. Overview of population encoding

The information conveyed by the firing rates of for example
inferior temporal cortex (IT) neurons increases almost linearly
with the number of different single neurons (up to reasonable
numbers of neurons in the range 14–50), so that neurons encode
information that is almost independent (Gawne and Richmond,
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1993; Rolls et al., 1997b, 2004; Booth and Rolls, 1998; Aggelo-
poulos et al., 2005) (Fig. 18).

Similar results have been found for the representation of
olfactory information in the orbitofrontal cortex (Rolls et al.,
2010a), for hippocampal cortex neurons about spatial location
(Rolls et al., 1998), and for head direction cells in the presubicular
cortex (Robertson et al., 1999).

Because information is a log measure, the number of stimuli
encoded by a population of neurons increases approximately
exponentially with the number of neurons (Rolls et al., 1997b;
Abbott et al., 1996).

Moreover, because the representation is distributed with a
different subset of neurons responding to different stimuli (Fig. 18),
and can be decoded quite efficiently by neuronally plausible dot-
product decoding (Rolls et al., 1997b), the code is very robust and
supports fundamental cortical computations including the recall of
memories from associative networks (Rolls, 2008), and fast
transmission across multilayer systems (Panzeri et al., 2001b).

The firing rate code is also fast: much of the information
available in a long period of 400 ms can be transmitted in time
periods as short as 20 ms (Rolls et al., 2006, 1999, 2004; Tovee and
Rolls, 1995). In these short time windows, each neuron will
transmit typically 0–3 spikes with a firing rate probability
distribution that is frequently approximately exponential, that
is, few neurons have high firing rates (Treves et al., 1999b; Franco
et al., 2007; Rolls, 2008).

In this scenario, it is the numbers of spikes carried by each of the
population of neurons that convey which stimulus is present, and
those numbers are effectively randomly different for each stimulus
(Fig. 18). More information is transmitted in a longer time window of
50 ms, showing that the number of spikes transmitted is important
in transmitting information (Tovee and Rolls, 1995; Rolls, 2008).
This evidence that one or a few spikes are important in the
firing rate code used by the cortex is relevant to understanding the
mechanisms by which neuronal synchronization can influence
information transmission in short time windows, by increasing
the number of spikes in a short time window (Deco and Rolls, in
preparation). These high information values are found with
stimulus-locked data collection so that no account need be taken
when neurons read the information of synchrony or oscillations,
which in any case are relatively small effects as shown by the lack
of oscillation evident in the autocorrelation functions of
individual neurons in primates, and by the fact that to the extent
that they are present they have little effect on these information
measures as shown by shuffling the data from different
simultaneously recorded neurons across trials (Aggelopoulos
et al., 2005; Rolls et al., 2004; Rolls, 2008; Deco and Rolls, in
preparation).

3.3.2. Population encoding with independent contributions from each

neuron

The rate at which a single cell provides information translates
into an instantaneous information flow across a population (with a
simple multiplication by the number of cells) only to the extent that
different cells provide different (independent) information. To verify
whether this condition holds, one cannot extend to multiple cells the
simplified formula for the first time-derivative, because it is made
simple precisely by the assumption of independence between
spikes, and one cannot even measure directly the full information
provided by multiple (more than two to three) cells, because of the
limited sampling problem discussed above. Therefore one has to
analyze the degree of independence (or conversely of redundancy)
either directly among pairs – at most triplets – of cells, or indirectly
by using decoding procedures to transform population responses.
Obviously, the results of the analysis will vary a great deal with the
particular neural system considered and the particular set of stimuli,
or in general of neuronal correlates, used. For many systems, before
undertaking to quantify the analysis in terms of information
measures, it takes only a simple qualitative description of the
responses to realize that there is a lot of redundancy and very little
diversity in the responses. For example, if one selects pain-
responsive cells in the somatosensory system and uses painful
electrical stimulation of different intensities, most of the recorded
cells are likely to convey pretty much the same information,
signalling the intensity of the stimulation with the intensity of their
single-cell response. Therefore, an analysis of redundancy makes
sense only for a neuronal system that functions to represent, and
enable discriminations between, a large variety of stimuli, and only
when using a set of stimuli representative, in some sense, of that
large variety.

Rolls et al. (1997b) measured the information available from a
population of inferior temporal cortex neurons using the decoding
methods described in Section 2.5, and found that the information
increased approximately linearly, as shown in Fig. 19. (It is shown
below that the increase is limited only by the information ceiling of
4.32 bits necessary to encode the 20 stimuli. If it were not for this
approach to the ceiling, the increase would be approximately
linear (Rolls et al., 1997b).) To the extent that the information
increases linearly with the number of neurons, the neurons convey
independent information, and there is no redundancy, at least with
numbers of neurons in this range.

Remembering that the information in bits is a logarithmic
measure, this shows that the representational capacity of this
population of cells increases exponentially (see Fig. 20). This is the
case both when an optimal, probability estimation, form of decoding
of the activity of the neuronal population is used, and also when the
neurally plausible (though less efficient) dot product type of
decoding is used (Fig. 19). By simulation of further neurons and



0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14

In
fo

rm
at

io
n 

(b
its

)

Cells in the population

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

P
er

ce
nt

 c
or

re
ct

Cells in the population

ba

Fig. 19. (a) The values for the average information available in the responses of different numbers of these neurons on each trial, about which of a set of 20 face stimuli has

been shown. The decoding method was Dot Product (DP, �) or Probability Estimation (PE, +). The full line indicates the amount of information expected from populations of

increasing size, when assuming random correlations within the constraint given by the ceiling (the information in the stimulus set, I = 4.32 bits). (b) The percent correct for

the corresponding data to those shown in (a). The measurement period was 500 ms.

After Rolls et al. (1997b).
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further stimuli, we have shown that the capacity grows very
impressively, approximately as shown in Fig. 20 (Abbott et al., 1996).

Although these and some of the other results described here are
for face-selective neurons in the inferior temporal visual cortex,
similar results were obtained for neurons responding to objects in
the inferior temporal visual cortex (Booth and Rolls, 1998), and for
neurons responding to spatial view in the hippocampus (Rolls
et al., 1998) (Fig. 21).

Although those neurons were not simultaneously recorded, a
similar approximately linear increase in the information from
simultaneously recorded cells as the number of neurons in the
sample increased also occurs (Rolls et al., 2003b, 2004, 2006;
Franco et al., 2004; Aggelopoulos et al., 2005). These findings imply
little redundancy, and that the number of stimuli that can be
Fig. 20. The number of stimuli (in this case from a set of 20 faces) that are encoded in

the responses of different numbers of neurons in the temporal lobe visual cortex,

based on the results shown in Fig. 19. Filled circles: Bayesian Probability Estimation

decoding. Open circles: Dot Product decoding.

After Rolls et al., 1997b; Abbott et al., 1996.
encoded increases approximately exponentially with the number
of neurons in the population, as illustrated in Figs. 20 and 19.

3.3.3. Quantifying redundancy

The issue of redundancy is considered in more detail now.
Redundancy can be defined with reference to a multiple channel of
capacity T(C) which can be decomposed into C separate channels of
capacities Ti, i = 1, . . ., C:

R ¼ 1 � TðCÞP
iTi

(25)

so that when the C channels are multiplexed with maximal
efficiency, T(C) =

P
iTi and R = 0. What is measured more easily, in

practice, is the redundancy defined with reference to a specific
source (the set of stimuli with their probabilities). Then in terms of
mutual information

R
0 ¼ 1 � IðCÞP

iIi
: (26)

Gawne and Richmond (1993) measured the redundancy R0 among
pairs of nearby primate inferior temporal cortex visual neurons, in
their response to a set of 32 Walsh patterns. They found values
with a mean hR0i = 0.1 (and a mean single-cell transinformation of
0.23 bits). Since to discriminate 32 different patterns takes 5 bits of
information, in principle one would need at least 22 cells each
providing 0.23 bits of strictly orthogonal information to represent
the full entropy of the stimulus set. Gawne and Richmond
reasoned, however, that, because of the overlap, y, in the
information they provided, more cells would be needed than if
the redundancy had been zero. They constructed a simple model
based on the notion that the overlap, y, in the information provided
by any two cells in the population always corresponds to the
average redundancy measured for nearby pairs. A redundancy
R0 = 0.1 corresponds to an overlap y = 0.2 in the information
provided by the two neurons, since, counting the overlapping
information only once, two cells would yield 1.8 times the amount



Fig. 21. Multiple cell information of spatial view cells in the primate hippocampus. (a) The values for the average information, I(S, S 0), available in the responses of different

numbers of hippocampal spatial view neurons on each trial, about which of the 16 ‘stimuli’ (i.e. quarters of walls) is being looked at. The Euclidean Distance decoding

algorithm was used for estimating the relative probability of posited stimuli s0 (solid line); the Dot Product result is shown with the dashed line. The 20 cells were recorded

from the same (av) animal. (b) The percent correct predictions based on the same data used in (a).

After Rolls et al. (1998).
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transmitted by one cell alone. If a fraction of 1 � y = 0.8 of the
information provided by a cell is novel with respect to that provided
by another cell, a fraction (1 � y)2 of the information provided by a
third cell will be novel with respect to what was known from the first
pair, and so on, yielding an estimate of IðCÞ ¼ Ið1Þ

PC�1
i¼0 ð1 � yÞi for

the total information conveyed by C cells. However such a sum
saturates, in the limit of an infinite number of cells, at the level
I(1) = I(1)/y, implying in their case that even with very many cells,
no more than 0.23/0.2 = 1.15 bits could be read off their activity, or
less than a quarter of what was available as entropy in the stimulus
set! Gawne and Richmond (1993) concluded, therefore, that the
average overlap among non-nearby cells must be considerably
lower than that measured for cells close to each other.

The model above is simple and attractive, but experimental
verification of the actual scaling of redundancy with the number of
cells entails collecting the responses of several cells interspersed in
a population of interest. Gochin et al. (1994) recorded from up to
58 cells in the primate temporal visual cortex, using sets of two to
five visual stimuli, and applied decoding procedures to measure
the information content in the population response. The recordings
were not simultaneous, but comparison with simultaneous
recordings from a smaller number of cells indicated that the
effect of recording the individual responses on separate trials was
minor. The results were expressed in terms of the novelty N in the
information provided by C cells, which being defined as the ratio of
such information to C times the average single-cell information,
can be expressed as

N ¼ 1 � R
0

(27)

and is thus the complement of the redundancy. An analysis of
two different data sets, which included three information
measures per data set, indicated a behaviour NðCÞ � 1=

ffiffiffi
C
p

,
reminiscent of the improvement in the overall noise-to-signal
ratio characterizing C independent processes contributing to the
same signal. The analysis neglected however to consider limited
sampling effects, and more seriously it neglected to consider
saturation effects due to the information content approaching its
ceiling, given by the entropy of the stimulus set. Since this ceiling
was quite low, for 5 stimuli at log 25 = 2.32 bits, relative to the
mutual information values measured from the population (an
average of 0.26 bits, or 1/9 of the ceiling, was provided by single
cells), it is conceivable that the novelty would have taken much
larger values if larger stimulus sets had been used.
A simple formula describing the approach to the ceiling, and
thus the saturation of information values as they come close to the
entropy of the stimulus set, can be derived from a natural
extension of the Gawne and Richmond (1993) model. In this
extension, the information provided by single cells, measured as a
fraction of the ceiling, is taken to coincide with the average overlap
among pairs of randomly selected, not necessarily nearby, cells
from the population. The actual value measured by Gawne and
Richmond would have been, again, 1/22 = 0.045, below the overlap
among nearby cells, y = 0.2. The assumption that y, measured
across any pair of cells, would have been as low as the fraction of
information provided by single cells is equivalent to conceiving of
single cells as ‘covering’ a random portion y of information space,
and thus of randomly selected pairs of cells as overlapping in a
fraction (y)2 of that space, and so on, as postulated by the Gawne
and Richmond (1993) model, for higher numbers of cells. The
approach to the ceiling is then described by the formula

IðCÞ � Hf1 � exp½C lnð1 � yÞ�g (28)

that is, a simple exponential saturation to the ceiling. This simple
law indeed describes remarkably well the trend in the data
analyzed by Rolls et al. (1997b).

Although the model has no reason to be exact, and therefore its
agreement with the data should not be expected to be accurate, the
crucial point it embodies is that deviations from a purely linear
increase in information with the number of cells analyzed are due
solely to the ceiling effect. Aside from the ceiling, due to the
sampling of an information space of finite entropy, the information
contents of different cells’ responses are independent of each
other. Thus, in the model, the observed redundancy (or indeed the
overlap) is purely a consequence of the finite size of the stimulus
set. If the population were probed with larger and larger sets of
stimuli, or more precisely with sets of increasing entropy, and the
amount of information conveyed by single cells were to remain
approximately the same, then the fraction of space ‘covered’ by
each cell, again y, would get smaller and smaller, tending to
eliminate redundancy for very large stimulus entropies (and a
fixed number of cells). The actual data were obtained with limited
numbers of stimuli, and therefore cannot probe directly the
conditions in which redundancy might reduce to zero. The data are
consistent, however, with the hypothesis embodied in the simple
model, as shown also by the near exponential approach to lower
ceilings found for information values calculated with reduced
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subsets of the original set of stimuli (Rolls et al., 1997b) (see further
Samengo and Treves (2000)).

The implication of this set of analyses, some performed
towards the end of the ventral visual stream of the monkey, is
that the representation of at least some classes of objects in those
areas is achieved with minimal redundancy by cells that are
allocated each to analyze a different aspect of the visual stimulus.
This minimal redundancy is what would be expected of a self-
organizing system in which different cells acquired their
response selectivities through a random process, with or without
local competition among nearby cells (Rolls, 2008). At the same
time, such low redundancy could also very well result in a system
that is organized under some strong teaching input, so that the
emerging picture is compatible with a simple random process,
but could be produced in other ways. The finding that, at least
with small numbers of neurons, redundancy may be effectively
minimized, is consistent not only with the concept of efficient
encoding, but also with the general idea that one of the functions
of the early visual system is to progressively minimize
redundancy in the representation of visual stimuli (Attneave,
1954; Barlow, 1961). However, the ventral visual system does
much more than produce a non-redundant representation of an
image, for it transforms the representation from an image to an
invariant representation of objects (Rolls, 2008). Moreover, what
is shown in this section is that the information about objects can
be read off from just the spike count of a population of neurons,
using decoding as simple as the simplest that could be performed
by a receiving neuron, dot product decoding. In this sense, the
information about objects is made explicit in the firing rate of the
neurons in the inferior temporal cortex, in that it can be read off
in this way.

We consider in Section 3.3.6 whether there is more to it than
this. Does the synchronization of neurons (and it would have to be
stimulus-dependent synchronization) add significantly to the
information that could be encoded by the number of spikes, as
has been suggested by some?

Before this, we consider why encoding by a population of
neurons is more powerful than the encoding than is possible by
single neurons, adding to previous arguments that a distributed
representation is much more computationally useful than a local
representation, by allowing properties such as generalization,
completion, and graceful degradation in associative neuronal
networks (Rolls, 2008).

3.3.4. Should one neuron be as discriminative as the whole organism?

In the analysis of random dot motion with a given level of
correlation among the moving dots, single neurons in area MT in
the dorsal visual system of the primate can be approximately as
sensitive or discriminative as the psychophysical performance of
the whole animal (Zohary et al., 1994). The arguments and
evidence presented here (e.g. in Section 3.3) suggest that this is not
the case for the ventral visual system, concerned with object
identification. Why should there be this difference?

Rolls and Treves (1998) suggest that the dimensionality of what
is being computed may account for the difference. In the case of
visual motion (at least in the study referred to), the problem was
effectively one-dimensional, in that the direction of motion of the
stimulus along a line in 2D space was extracted from the activity of
the neurons. In this low-dimensional stimulus space, the neurons
may each perform one of the few similar computations on a
particular (local) portion of 2D space, with the side effect that, by
averaging over a larger receptive field than in V1, one can extract a
signal of a more global nature. Indeed, in the case of more global
motion, it is the average of the neuronal activity that can be
computed by the larger receptive fields of MT neurons that
specifies the average or global direction of motion.
In contrast, in the higher dimensional space of objects, in
which there are very many different objects to represent as being
different from each other, and in a system that is not concerned
with location in visual space but on the contrary tends to be
relatively invariant with respect to location, the goal of the
representation is to reflect the many aspects of the input
information in a way that enables many different objects to be
represented, in what is effectively a very high dimensional space.
This is achieved by allocating cells, each with an intrinsically
limited discriminative power, to sample as thoroughly as
possible the many dimensions of the space. Thus the system is
geared to use efficiently the parallel computations of all its
neurons precisely for tasks such as that of face discrimination,
which was used as an experimental probe. Moreover, object
representation must be kept higher dimensional, in that it may
have to be decoded by dot product decoders in associative
memories, in which the input patterns must be in a space that is
as high-dimensional as possible (i.e. the activity on different
input axons should not be too highly correlated). In this situation,
each neuron should act somewhat independently of its neigh-
bours, so that each provides its own separate contribution that
adds together with that of the other neurons (in a linear manner,
see above and Figs. 19 and 20) to provide in toto sufficient
information to specify which out of perhaps several thousand
visual stimuli was seen. The computation involves in this case
not an average of neuronal activity (which would be useful for,
e.g. head direction (Robertson et al., 1999)), but instead
comparing the dot product of the activity of the population of
neurons with a previously learned vector, stored in, for example,
associative memories as the weight vector on a receiving neuron
or neurons.

Zohary et al. (1994) put forward another argument which
suggested to them that the brain could hardly benefit from taking
into account the activity of more than a very limited number of
neurons. The argument was based on their measurement of a small
(0.12) correlation between the activity of simultaneously recorded
neurons in area MT. They suggested that there would because of
this be decreasing signal-to-noise ratio advantages as more
neurons were included in the population, and that this would
limit the number of neurons that it would be useful to decode to
approximately 100. However, a measure of correlations in the
activity of different neurons depends entirely on the way the space
of neuronal activity is sampled, that is on the task chosen to probe
the system. Among face cells in the temporal cortex, for example,
much higher correlations would be observed when the task is a
simple two-way discrimination between a face and a non-face,
than when the task involves finer identification of several different
faces. (It is also entirely possible that some face cells could be found
that perform as well in a given particular face/non-face discrimi-
nation as the whole animal.) Moreover, their argument depends on
the type of decoding of the activity of the population that is
envisaged (see further Robertson et al. (1999)). It implies that the
average of the neuronal activity must be estimated accurately. If a
set of neurons uses dot product decoding, and then the activity of
the decoding population is scaled or normalized by some negative
feedback through inhibitory interneurons, then the effect of such
correlated firing in the sending population is reduced, for the
decoding effectively measures the relative firing of the different
neurons in the population to be decoded. This is equivalent to
measuring the angle between the current vector formed by the
population of neurons firing, and a previously learned vector,
stored in synaptic weights. Thus, with for example this biologically
plausible decoding, it is not clear whether the correlation Zohary
et al. (1994) describe would place a severe limit on the ability of the
brain to utilize the information available in a population of
neurons.
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The main conclusion from this and the preceding section is that
the information available from a set or ensemble of temporal
cortex visual neurons increases approximately linearly as more
neurons are added to the sample. This is powerful evidence that
distributed encoding is used by the brain; and the code can be read
just by knowing the firing rates in a short time of the population of
neurons. The fact that the code can be read off from the firing rates,
and by a principle as simple and neuron-like as dot product
decoding, provides strong support for the general approach taken
to brain function (Rolls, 2008).

It is possible that more information would be available in the
relative time of occurrence of the spikes, either within the spike
train of a single neuron, or between the spike trains of different
neurons, and it is to this that we now turn.

3.3.5. Information representation in the taste and olfactory systems

Similar principles to those described here for the representation
of visual stimuli in the primate inferior temporal visual cortex also
apply to the representation of taste and olfactory information in the
cortical areas for taste and olfaction in primates (Rolls et al., 2010a).
Information theory analysis shows a robust representation of taste
in the primate orbitofrontal cortex, with an average mutual
information of 0.45 bits for each neuron about which of 6 tastants
(glucose (sweet), NaCl (salt), HCl (sour), quinine-HCl (bitter),
monosodium glutamate (umami (Rolls, 2009)), and water) was
present, averaged across 135 gustatory neurons. The information
increased with the number of neurons in the ensemble, but less than
linearly, reflecting some redundancy. There was less information per
neuron about which of 6 odors was present from orbitofrontal cortex
olfactory neurons, but the code was robust, in that the information
increased linearly with the number of neurons, reflecting indepen-
dent information encoded by different neurons (Rolls et al., 2010a).

3.3.6. The effects of cross-correlations between cells

Using the second derivative methods described in Section 2.6.2
(see Rolls et al. (2003b)), the information available from the
number of spikes vs. that from the cross-correlations between
simultaneously recorded cells has been analyzed for a population
of neurons in the inferior temporal visual cortex (Rolls et al., 2004).
The stimuli were a set of 20 objects, faces, and scenes presented
while the monkey performed a visual discrimination task. If
synchronization was being used to bind the parts of each object
into the correct spatial relationship to other parts, this might be
expected to be revealed by stimulus-dependent cross-correlations
in the firing of simultaneously recorded groups of 2–4 cells using
multiple single-neuron microelectrodes.

The results for the 20 experiments with groups of 2–4
simultaneously recorded inferior temporal cortex neurons are
shown in Table 3. (The total information is the total from Eqs. (21)
and (22) in a 100 ms time window, and is not expected to be the
sum of the contributions shown in Table 3 because only the
information from the cross terms (for i 6¼ j) is shown in the table for
the contributions related to the stimulus-dependent contributions
and the stimulus-independent contributions arising from the
‘noise’ correlations.) The results show that the greatest contribu-
tion to the information is that from the rates, that is from the
Table 3
The average contributions (in bits) of different components of equations 21 and 22

to the information available in a 100 ms time window from 13 sets of

simultaneously recorded inferior temporal cortex neurons when shown 20 stimuli

effective for the cells.

Rate 0.26

Stimulus-dependent ‘‘noise’’ correlation-related, cross term 0.04

Stimulus-independent ‘‘noise’’ correlation-related, cross term �0.05

Total information 0.31
numbers of spikes from each neuron in the time window of 100 ms.
The average value of �0.05 bits for the cross term of the stimulus
independent ‘noise’ correlation-related contribution is consistent
with on average a small amount of common input to neurons in the
inferior temporal visual cortex. A positive value for the cross term
of the stimulus-dependent ‘noise’ correlation related contribution
would be consistent with on average a small amount of stimulus-
dependent synchronization, but the actual value found, 0.04 bits, is
so small that for 17 of the 20 experiments it is less than that which
can arise by chance statistical fluctuations of the time of arrival of
the spikes, as shown by MonteCarlo control rearrangements of the
same data. Thus on average there was no significant contribution
to the information from stimulus-dependent synchronization
effects (Rolls et al., 2004).

Thus, this data set provides evidence for considerable
information available from the number of spikes that each cell
produces to different stimuli, and evidence for little impact of
common input, or of synchronization, on the amount of informa-
tion provided by sets of simultaneously recorded inferior temporal
cortex neurons. Further supporting data for the inferior temporal
visual cortex are provided by Rolls et al. (2003b). In that parts as
well as whole objects are represented in the inferior temporal
cortex (Perrett et al., 1982), and in that the parts must be bound
together in the correct spatial configuration for the inferior
temporal cortex neurons to respond (Rolls et al., 1994), we might
have expected temporal synchrony, if used to implement feature
binding, to have been evident in these experiments.

3.3.7. Stimulus-dependent neuronal synchrony is not used for binding

even with natural vision and attention

We have also explored neuronal encoding under natural scene
conditions in a task in which top-down attention must be used, a
visual search task. We applied the decoding information theoretic
method of Section 2.6 to the responses of neurons in the inferior
temporal visual cortex recorded under conditions in which feature
binding is likely to be needed, that is when the monkey had to
choose to touch one of the two simultaneously presented objects,
with the stimuli presented in a complex natural background
(Aggelopoulos et al., 2005). The investigation is thus directly
relevant to whether stimulus-dependent synchrony contributes to
encoding under natural conditions, and when an attentional task
was being performed. In the attentional task, the monkey had to
find one of the two objects and to touch it to obtain reward. This is
thus an object-based attentional visual search task, where the top-
down bias is for the object that has to be found in the scene
(Aggelopoulos et al., 2005). The objects could be presented against
a complex natural scene background. Neurons in the inferior
temporal visual cortex respond in some cases to object features or
parts, and in other cases to whole objects provided that the parts
are in the correct spatial configuration (Perrett et al., 1982;
Desimone et al., 1984; Rolls et al., 1994; Tanaka, 1996; Rolls, 2008,
2011b), and so it is very appropriate to measure whether stimulus-
dependent synchrony contributes to information encoding in the
inferior temporal visual cortex when two objects are present in the
visual field, and when they must be segmented from the
background in a natural visual scene, which are the conditions
in which it has been postulated that stimulus-dependent
synchrony would be useful (Singer, 1999, 2000).

Aggelopoulos et al. (2005) found that between 99% and 94% of
the information was present in the firing rates of inferior temporal
cortex neurons, and less that 5% in any stimulus-dependent
synchrony that was present, as illustrated in Fig. 22. The
implication of these results is that any stimulus-dependent
synchrony that is present is not quantitatively important as
measured by information theoretic analyses under natural scene
conditions. This has been found for the inferior temporal visual



Fig. 22. Left: the objects against the plain background, and in a natural scene. Right: the information available from the firing rates (Rate Inf) or from stimulus-dependent

synchrony (Cross-Corr Inf) from populations of simultaneously recorded inferior temporal cortex neurons about which stimulus had been presented in a complex natural

scene. The total information (Total Inf) is that available from both the rate and the stimulus-dependent synchrony, which do not necessarily contribute independently.

Bottom: eye position recordings and spiking activity from two neurons on a single trial of the task. (Neuron 31 tended to fire more when the macaque looked at one of the

stimuli, S�, and neuron 21 tended to fire more when the macaque looked at the other stimulus, Sþ. Both stimuli were within the receptive field of the neuron).

After Aggelopoulos et al. (2005).
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cortex, a brain region where features are put together to form
representations of objects (Rolls and Deco, 2002), where attention
has strong effects, at least in scenes with blank backgrounds (Rolls
et al., 2003a), and in an object-based attentional search task.

The finding as assessed by information theoretic methods of the
importance of firing rates and not stimulus-dependent synchrony
is consistent with previous information theoretic approaches
(Rolls et al., 2003b, 2004; Franco et al., 2004). It would of course
also be of interest to test the same hypothesis in earlier visual
areas, such as V4, with quantitative, information theoretic,
techniques. In connection with rate codes, it should be noted that
the findings indicate that the number of spikes that arrive in a
given time is what is important for very useful amounts of
information to be made available from a population of neurons;
and that this time can be very short, as little as 20–50 ms (Tovee
and Rolls, 1995; Rolls and Tovee, 1994; Rolls et al., 1999, 1994,
2006; Rolls and Deco, 2002; Rolls, 2003). Further, it was shown that
there was little redundancy (less than 6%) between the information
provided by the spike counts of the simultaneously recorded
neurons, making spike counts an efficient population code with a
high encoding capacity.

3.3.8. Conclusions on feature binding in vision

The findings (Aggelopoulos et al., 2005; Rolls et al., 2004) are
consistent with the hypothesis that feature binding is implemen-
ted by neurons that respond to features in the correct relative
spatial locations (Rolls and Deco, 2002; Elliffe et al., 2002; Rolls,
2008), and not by temporal synchrony and attention (Malsburg,
1990; Singer et al., 1990; Abeles, 1991; Hummel and Biederman,
1992; Singer and Gray, 1995; Singer, 1999, 2000).

In any case, the computational point is that even if stimulus-
dependent synchrony was useful for grouping, it would not
without much extra machinery be useful for binding the relative
spatial positions of features within an object (Rolls, 2008), or for
that matter of the positions of objects in a scene which appears to
be encoded in a different way, by neurons that respond to
combinations of stimuli when they are in the correct relative
spatial positions (Aggelopoulos and Rolls, 2005; Rolls et al., 2008c;
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Rolls, 2008). The greatest computational problem is that synchro-
nization does not by itself define the spatial relations between the
features being bound, so is not just as a binding mechanism
adequate for shape recognition. For example, temporal binding
might enable features 1, 2 and 3, which might define one stimulus
to be grouped together and kept separate from for example another
stimulus consisting of features 2, 3 and 4, but would require a
further temporal binding (leading in the end potentially to a
combinatorial explosion) to indicate the relative spatial positions
of the 1, 2 and 3 in the 123 stimulus, so that it can be discriminated
from, e.g. 312 (Rolls, 2008).

Similar conclusions have been reached in visual motion area
MT, where synchrony in spiking activity shows little dependence
on feature grouping, whereas gamma band synchrony in local field
potentials (LFP) can be significantly stronger when features are
grouped (Palanca and DeAngelis, 2005). However, these changes in
gamma band synchrony are small relative to the variability of
synchrony across recording sites and do not provide a robust
population signal for feature grouping. Moreover, these effects are
reduced when stimulus differences nearby the receptive fields are
eliminated using partial occlusion. These findings suggest that
synchrony does not constitute a general mechanism of visual
feature binding (Palanca and DeAngelis, 2005). Further, in MT
coherent plaids (for which binding may be needed) elicited less
stimulus-dependent neuronal synchrony than did non-coherent
plaids (Thiele and Stoner, 2003). Similarly in V1, recordings from
pairs of V1 recording sites while presenting either single or
separate bar stimuli indicated that between 89% and 96% of the
information was carried by firing rates; correlations contributed
only 4–11% extra information (Golledge et al., 2003). The
distribution across the population of either correlation strength
or correlation information did not co-vary systematically with
changes in perception predicted by Gestalt psychology. These
results suggest that firing rates, rather than correlations, are the
main element of the population code for feature binding in primary
visual cortex (Golledge et al., 2003).

If there is synchrony that is present caused for example by
oscillations (Deco and Rolls, in preparation) and that is stimulus-
independent, this can, because of redundancy, decrease the
information available in the ensemble of neurons (Oram et al.,
1998; Rolls et al., 2004). In practice, such trial-by-trial stimulus-
independent ‘‘noise’’ correlations that include any effects of
synchrony lead to the loss of just a few percent of the information
that would otherwise be available from IT neurons (Rolls et al.,
2004).

3.4. Information about physical space

We have seen in the preceding sections that it is difficult to
extract information measures from the activity of populations of
neurons, because a large response space implies an enormous
(exponentially large) number of repetitions of the same conditions,
to be adequately sampled. Then, when more than 2–3 neurons (or
2–3 aspects of the activity of a single neuron) are to be considered
together, the two effective approaches are either to consider the
information conveyed in very short time periods, through the
derivative approach (Section 2.6.2), or the information present in
the confusion matrix, obtained after a decoding step, which brings
us from the response space back to the stimulus or external
correlate space (Section 2.6). Neither of these two approaches
suffices, however, when the space of stimuli (or, in general,
external correlates) is itself high-dimensional, or even low
dimensional but effectively large or continuous. A prominent
example is physical space.

When the information encoded by the neuronal population is
the position of an object in space, or of the animal in space, as with
‘place cells’ (O’Keefe and Dostrovsky, 1971), or of the animal’s gaze
in space, as in ‘spatial view cells’ (Rolls et al., 1997a, 1998; Rolls and
Xiang, 2006), there are very many positions potentially discrimi-
nable by decoding population activity. For example, a rat free
foraging in a 1 sq m box can be, even discretizing space at the
relatively gross resolution of 5 cm, in 20 � 20 = 400 distinct
positions. The confusion matrix generated by a straightforward
decoding algorithm has 400 � 400 = 160, 000 elements. If hippo-
campal activity is sampled once per theta cycle (Section 3.2.4, Jezek
et al. (2011)), sufficient sampling of the confusion matrix for the
purposes of extracting information measures requires of the order
of 1 million temporal samples (population vectors in a theta cycle),
that is 1–2 days of continuous recording! This is feasible with
neural network simulations (Cerasti and Treves, 2010) but not with
recordings in vivo. Halving the linear spatial resolution to a still
moderate 2.5 cm quadruples the number of positions and multi-
plies the recording time required by 16.

Clearly, the curse of dimensionality has moved from the
response space to physical space, when physical space is what is
encoded by the neuronal responses. What approaches are available
to still address quantitatively this important correlate of neural
activity?

3.4.1. Information about spatial context

One possible approach is to restrict the analysis to the encoding
of spatial context, intended as a larger portion of space than the
exact position of the object, or animal, or spatial view. If there are
few possible contexts, the curse of dimensionality does not apply.
Several experimental paradigms lend themselves naturally to a
discretization of continuous space. For example, with a rodent
foraging in a few different boxes, one can ask how well place cell
activity discriminates among boxes, irrespective of the position of
the animal within each box. With 3 boxes, for example, the
confusion matrix reduces to 3 � 3, which in terms of size is easy to
sample. The challenge, however, lies in the fact that place cell
activity in a single box is highly inhomogeneous, with different
ensembles of units active at different positions within a box. If one
thinks in terms of population vectors, the population vectors
sampled at one position in a box may form a more or less loose
cluster, but those sampled at all the different positions in a box are
likely to be scattered in a diffuse cloud, which may be hard to
separate from the distribution of population vectors occurring in a
different box. Here, too, a way to address the challenge is to
consider temporal bins short relative to the inverse of the average
firing rates of the population of units being decoded, as in the
procedure developed by Fyhn et al. (2007).

In that analysis, population vectors were extracted with 150 ms
bins, as the list of neurons that fired at least 1 spike in the bin (in a
control analysis, the units that fired exactly 1 spike and those that
fired 2 or more spikes were considered separately). Recording from
5 to 7 grid cells in medial entorhinal cortex (mEC) and some 25–30
place cells in CA3, typically each spatial context was represented
by of order a hundred distinct binary population vectors (or double
or so ternary ones). This is because 10–12 units may fire
somewhere within a box, and rarely more than two in the same
150 ms temporal bin. Allowing rats to forage for 10 min in each
box, or roughly 3600 temporal bins, is sufficient to sample
adequately a hundred or so distinct possible responses. Therefore
the question of whether distinct spatial contexts are represented in
neural activity reduces to determining to what extent the
manifolds spanned by population vectors in the different boxes
overlap with each other, or in other words to what extent different
boxes produce distinct coactivity patterns. With place cells, given
the tens of units in practice sampled in a typical recording session
and their sparseness, it is the single and pair-wise coactivity
patterns that largely determine the outcome of the analysis.



E.T. Rolls, A. Treves / Progress in Neurobiology 95 (2011) 448–490478
In rats with simultaneous recordings from mEC and CA3, the
mean Shannon mutual information between recording session and
distribution of population vectors demonstrated strikingly diverg-
ing encoding schemes. In mEC, the mutual information was no
larger for comparisons of sessions in different boxes than for
comparisons of repeated sessions in the same box (and also not
larger even for sessions run in entirely different rooms), indicating
that grid cells that are coactive in one context remain coactive in
others, too. In CA3, the mutual information about which box the rat
was foraging in a session was above 0.5 bits when the boxes (or the
rooms) were different, well above the values obtained for repeated
sessions in the same spatial context (Fyhn et al., 2007). A shuffling
procedure allowed for bootstrapping validation of the result:
information values in mEC were much lower than when cell
identities were randomly shuffled between sessions, whereas in
CA3 they were not statistically different from the values obtained
after random shuffling of cell identities. Therefore coactivity
patterns are largely overlapping, or covering roughly the same
manifold, in mEC, whereas they differentiate in CA3 (Fig. 23,
Leutgeb et al. (2004)), supporting the notion that the dentate gyrus
acts as a sort of random spatial pattern generator, to decorrelate
spatial information as it enters the hippocampal system and
establishes representations in CA3 (Cerasti and Treves, 2010;
Treves and Rolls, 1992; Rolls, 1989, 2010).

3.4.2. Information about position from individual cells

The above observations indicate that in order to understand
how spatial information is transformed in different regions of the
brain, the coactivity patterns among different units have to be
taken into account. If one is focusing on spatial codes expressed
over very short times, however, the derivative approach of
Sections 2.3 and 2.6.2 shows that even pair-wise coactivity pattern
can be neglected: the first order terms in a Taylor expansion in the
length of the temporal window, taken to be vanishingly short, are
simply the contributions from individual units.

One can then use Eq. (21), with the linear summation of the
contribution of different units. It is customary to divide the
contribution of each unit to It by its mean firing rate, obtaining
what is called the information per spike, introduced first by Bill
Skaggs (Skaggs and McNaughton, 1992). This is nothing but a
scaled version of the individual terms in the time derivative, but
one should bear in mind that in order to add several individual
terms, one must use bit/s and not bit/spike.

Contributions of order a few bits/s are typical of place cells in
rodents. The fact that place cells are commonly assumed to code
CA3

mEC

(DG)

Fig. 23. Schematic of the decorrelation of spatial manifolds, observed as spatial

information is recoded from rodent medial entorhinal cortex (mEC), where for all

practical purposes one can think of allocentic space as being represented by a single

map, to area CA3 of the hippocampus, where neuronal activity can be described as

spanning multiple, uncorrelated maps (Leutgeb et al., 2004). Each map represents

several locations in one physical environment, ideally through a continuous 2D

attractor. Colored areas represent two place fields in one map and one in another

map. The crucial decorrelation operation is ascribed to the randomizing effect of the

dentate gyrus (DG) as in the model by Cerasti and Treves (2010).
information relatively independently of each other, aside from
common modulation by theta and other rhythms, makes neglect-
ing pairwise and higher-order correlations a very reasonable
approximation.

3.4.3. Information about position, transparent and dark

In contrast to neuronal recordings, computer simulations can be
carried on indefinitely, and they allow the quantification of
information about exact position in space. They also allow, in
principle, a comparison with model-based analytical calculations,
although the comparison is not completely straightforward
(Cerasti and Treves, 2010).

An interesting result emerging from computer simulations is
the distinction between spatial information that is transparent, i.e.
expressed in purely spatial terms and easily read out, and spatial
information that is implicit in more convoluted codes, admixed
with and contaminated by non-spatial information. The measures
of mutual information that can be extracted from the simulations
are, in fact, strongly dependent on the method used, in the
decoding step, to construct the localization matrix, i.e. the confusion
matrix specialized to the case of information about position, which
compiles the frequency with which actual position x0 was decoded
as position x0 + Dx. In the general case, applicable also to non-
spatial codes, information measures are obtained constructing the
full confusion matrix Q(x0, x0 + Dx) which, if again one considers a
square environment discretized into 20 � 20 spatial bins, is a large
400 � 400 matrix, which requires of order hundreds of thousands
of decoding events to be effectively sampled, even after applying a
correction for limited sampling. An alternative available in the
spatial case, that allows extracting unbiased measures from much
shorter simulations, is to construct a simplified matrix Q(Dx),
which averages over decoding events with the same vector
displacement between actual and decoded positions. Q(Dx) is
easily constructed, and if the simulated environment is a torus, i.e.
with periodic boundary conditions, it ends up being a much
smaller 20 � 20 matrix which is effectively sampled in just a few
thousand steps.

The two decoding procedures, given that the simplified matrix
is the shifted average of the rows of the full matrix, might be
expected to yield similar measures, but they do not, as shown in
Fig. 24. The simplified matrix, by assuming translation invariance
of the errors in decoding, is unable to quantify the information
implicitly present in the full distribution of errors around each
actual position. Such errors are of an episodic nature: the local view
from position x0 + Dx might happen to be similar to that from
position x0, hence neural activity reflecting in part local views
might lead to confuse the two positions, but this does not imply
that another position z0 has anything in common with z0 + Dx.
Fig. 24 shows that for any actual position there are a few selected
positions that are likely to be erroneously decoded from the
activity of a given sample of units; when constructing instead the
translationally invariant simplified matrix, all average errors are
distributed smoothly around the correct position (zero error), in a
roughly Gaussian bell. The upper right panel in Fig. 24, reproduced
from the simulations by Cerasti and Treves (2010), shows that such
episodic information prevails. The lower right panel in the figure
compares, instead, the entropies of the decoded positions with the
two matrices, conditioned on the actual position – that is, the
equivocation values. Unlike the mutual information, such equivo-
cation is much higher for the simplified matrix; for this matrix, it is
simply a measure of how widely displaced are decoded positions,
with respect to the actual positions, represented at the center of
the square; and for small samples of units, which are not very
informative, the displacement entropy approaches that of a flat
distribution of decoded positions, i.e. log 2(400)� 8.64 bits. For
larger samples, which enable better localization, the simplified



Fig. 24. Localization matrices, after Cerasti and Treves (2010). Left: the rows of the full matrix represent the actual positions of the virtual rat while its columns represent

decoded positions (the full matrix is actually 400�400); three examples of rows are shown, rendered here as 20�20 squares, all from decoding a given sample of 10 units. The

simplified matrix is a single 20 � 20 matrix obtained (from the same sample) as the average of the full matrix taking into account translation invariance. Right, top: the two

procedures lead to large quantitative differences in information (here, the measures from samples of 10 units, divided by 10, from the full matrix, cyan, and from the

simplified matrix, black), but with the same dependence on the number of mossy fiber connections per CA3 cell CMF. Right, bottom: The conditional entropies of the full and

simplified localization matrices (cyan and black, dashed, calculated over different samples of NCA3 units) in both cases add up to the respective mutual information measure

(cyan and black, solid) to give the full entropy of log (400) � 8.64 bits (green line). The conditional entropy calculated from the full matrix averaged across samples (red,

dashed) is equivalent to that calculated from the displacements, for each sample (black, dashed).
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localization matrix begins to be clustered in a Gaussian bell around
zero displacement, so that the equivocation gradually decreases
(the list of displacements, with their frequencies, is computed for
each sample, and it is the equivocation, not the list itself, which is
averaged across samples).

In contrast, the entropy of each row of the full localization
matrix, i.e. the entropy of decoded positions conditioned on any
actual position, is lower, and also decreasing more steeply with
sample size; it differs from the full entropy, in fact, by the mutual
information between decoded and actual positions, which
increases with sample size. The two equivocation measures
therefore both add up to the two mutual information measures
to yield the same full entropy of about 8.64 bits (a bit less in the
case of the full matrix, where the sampling is more limited), and
thus serve as controls that the difference in mutual information is
not due, for example, to inaccuracy. As a third crucial control, also
the average conditional entropy of the full localization matrix was
calculated, when the matrix is averaged across samples of a given
size: the resulting entropy is virtually identical to the displacement
entropy (which implies instead an average of the full matrix across
rows, i.e. across actual positions). This indicates that different
samples of units express distinct episodic content at each location,
such that averaging across samples is equivalent to averaging
across locations.

These distinctions do not alter the other results of the study by
Cerasti and Treves (2010), since they affect the height of the curves,
not their dependence, e.g. on the connectivity, however they have
important implications. The simplified matrix has the advantage of
requiring much less data, i.e. less simulation time, but also less real
data if applied to neurophysiological recordings, than the full
matrix, and in most situations it might be the only feasible
measure of spatial information (analytical estimates are not
available of course for real data). So in most cases it is only practical
to measure spatial information with methods that, the model
suggests, miss out much of the information present in neuronal
activity, what we may refer to as dark information, not easily
revealed. One might conjecture that in the specific case analyzed
by Cerasti and Treves (2010), the prevalence of dark information is
linked to the random nature of the spatial code established by DG
inputs. It might be that additional stages of hippocampal
processing, either with the refinement of recurrent CA3 connec-
tions or in CA1, are instrumental in making dark information more
transparent.

3.5. Information in virtual space

When the external correlates encoded in neural activity do not
span physical space, or a manifold with a natural metric, one may
still study the metric of the virtual manifold established by the
patterns of neuronal activity with which they are associated. If a
number of discrete stimuli, faces for example, elicits on repeated
trials a distribution of response population vectors in a particular
cortical area, one may define distances between pairs of stimuli in
terms of the overlaps in the corresponding distributions of
population vectors, and analyze the overall structure of such
pair-wise distances in geometric terms. A specific aspect of this
general approach focuses solely on extracting a summary index
quantifying the average overlap between patterns elicited by
different stimuli. Since the absence of any overlap implies that no
genuine metric structure can be defined (all stimuli would be
effectively at maximum distance from each other, because
differences in distances between mean population vectors, if their
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distributions do not overlap, are irrelevant), such a quantity can be
called an index of metric content. Conversely, any overlap results
in the possibility of errors in decoding, so that one can formulate
this type of analysis as first decoding neuronal activity, and then
analyzing the confusion matrix expressing relations between
actual and decoded stimuli.

3.5.1. The metric content index

An information theoretical approach focusing on an index of
metric content index requires extracting, from a given neuronal
representation of a discrete set of stimuli, the percent correctly
decoded fcorr and the mutual information I between actual and
decoded stimuli. Both quantities are obtained from the confusion
matrix (fcorr is the sum of its diagonal elements), hence they do not
have to be really based on an underlying neuronal representation:
the confusion matrix can for example be obtained directly from
behavioural responses, or from some other psychophysical
measurement. In view of the application used for illustration
below, and to avoid mentioning all the time the decoding step, we
shall refer here to a confusion matrix obtained from the behaviour
of human subjects, who classify items into categories. Nevertheless
the framework remains completely general, and categories can be
replaced with stimuli, and individual items with individual trials,
as in our analysis of the metric content of hippocampal spatial view
cells (Treves et al., 1999a).

For a given fcorr, I takes its theoretically minimum value when
incorrect responses are evenly distributed among stimuli (Treves,
1997). Assuming the confusion matrix Q to have been constructed
with sufficient statistics, this means that

Qðs; s
0 6¼ sÞ ¼ 1 � f corr

S � 1
; (29)

and

Imin ¼ log2S þ f corrlog2 f corr þ ð1 � f corrÞlog2
1 � f corr

S � 1

	 

: (30)

The absolute maximum value of I for a given fcorr, on the other
hand, is attained when all incorrect responses are grouped into a
single category s0 (different for each correct category s), in which
case

I
0 ¼ log2S þ f corrlog2 f corr þ ð1 � f corrÞlog2ð1 � f corrÞ: (31)

This maximum however would correspond to a perverse
systematic misclassification by the subject. A more useful
reference value can be obtained by assuming unbiased classifica-
tion (incorrect categories can at most be chosen as frequently as
the correct one) and, for mathematical simplicity, a real (not
integer) number of categories. Then the largest information value
corresponds to the case in which all pictures are categorized in
clusters of size 1/fcorr and, for each item, the cluster is correctly
identified but the category inside it is selected at random (Treves,
1997). One finds in this case

Imax ¼ log2S þ log2 f corr: (32)

If one then interprets the probability of misclassification as a
monotonically decreasing function of some underlying perceived
distance between the categories, in the minimum information
scenario categories can be thought of as drawn from a space of
extremely high dimensionality, so that they all tend to be at the
same distance from each other; while in the maximum informa-
tion case (which can be realized for example by an ultrametric or
taxonomic classification (Treves, 1997)) categories which are at a
distance less than some critical value from each other form
clusters, while the distance between any two members of different
clusters is above the critical value; therefore errors are more
concentrated. This increases the mutual information value of the
categorization for a given fcorr. Intermediate situations can be
conveniently described by quantifying the relative amount of
information for a given fcorr with the parameter

l ¼ I � Imin

Imax � Imin
: (33)

This metric content index ranges from 0 to about 1 (occasionally
taking values above 1, see Fig. 26), and in all generality it quantifies
the degree to which relationships of being ‘close’ or ‘distant’ among
stimuli have been relevant to their perception and classification
(Treves, 1997). For l = 0 such relationships are irrelevant, and if a
stimulus is misclassified the probability of assigning it to any of the
wrong categories is the same. For l = 1, categories can be thought
of as clustering into an arbitrary but systematic semantic structure,
while the particular category within each cluster is chosen at
random.

To visualize the metric content measure, it is useful to plot fcorr

and I with the additional lines indicating Imin(fcorr) and Imax(fcorr)
(see Fig. 26a). The relative vertical excursion of a data point
between these two lines represents the metric content of the
classification by that subject. This kind of representation is
particularly suitable to compare and analyze the performance of
groups of subjects in the test described below, in that quantitative
differences in the joint fcorr � l distribution are reflected in the
different positions they occupy in the ‘leaf’ diagram.

3.5.2. Estimating metric content from human subjects’ behaviour

The Famous Faces Multiple Choice Task (FFMCT (Lauro-Grotto
et al., 1997a); see Fig. 25) requires the subject to classify a set of 54
pictures of famous people into 9 disjoint categories according to
nationality (Italian, Other European and American) and field of
activity (Sports people, Politicians, Actors and Singers). The picture
categories are the 9 combinations of nationality by field of activity.
Each category includes 6 famous faces from across the 20th
century, 2 of whom became famous roughly in the 40s–50s, 2 in
the 60s–70s and 2 in the 80s–90s. Prominent personalities were
chosen on the basis of their fame, whereas they were portrayed in
pictures spanning a range from easily recognizable to quite
difficult. As a result, famous faces from the 50s were in principle
recognizable even by subjects who were not alive when they
became famous, and at the same time it was very difficult for any
subject to achieve nearly perfect performance. Ensuring a
substantial number of errors is of course a prerequisite in order
to examine their distribution.

The performance of each subject can be described directly by
the matrix Q(s, s 0), the confusion matrix, reporting the frequency
with which an image belonged to category s and was classified by
the subject as s0. From Q(s, s0), one extracts fcorr = SsQ(s, s) and

I ¼ Ss;s0Qðs; s
0 Þlog2

Qðs; s0 Þ
PðsÞQðs0 Þ

	 

� C1; (34)

where P(s) =1/9 is the a priori frequency of each category, Q(s 0) is
the marginal frequency of responses in category s0 (cumulated over
the actual category of each picture), and C1 is a correction term that
removes most of the bias due to using frequencies rather than
probabilities (Panzeri and Treves, 1996).

When a picture is misclassified by the subject, it can still be
assigned to the correct nationality or to the correct field of activity;
it is also possible that the subject has a tendency to confuse, solely
among Politicians, Americans with Other Europeans, or else, solely
among Americans, Politicians with Actors and Singers; more in
general, errors can be entirely random or they can be concentrated,
to a varying degree, by incomplete semantic cueing. Unlike fcorr, I is
sensitive to the concentration of the categories s0 mistakenly



Fig. 25. The Famous Faces Memory Classification Task, developed by Lauro-Grotto

et al. (2007).
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assigned to each actual category s. However, since I measures the
total (average) concentration of responses s0 for each category s, it
largely co-varies with fcorr, which measures their average
concentration in the correct category s itself. Thus, to turn it into
an effective measure of the concentration of errors only, the main
dependence of I on fcorr can be removed by using, as explained
above, the metric content index l, which simply reflects the range
of values I can take for a fixed fcorr (Treves, 1997). High levels of
metric content indicate strong dependence of the classification
performance on perceived relations among the set of stimuli, and
therefore a preferred semantic access mode.

The metric content index is therefore in this case a measure of
the amount of structure embedded in the neural representations
that inform subject behaviour. It is high when individual memory
items are classified using semantic cues, which leads to a more
concentrated distribution of errors. It is low either when
performance is random (in which case performance measures
are also low), or when episodic access to the identity of each
famous face is prevalent, semantic relationships remain largely
unused, and errors, when made, tend to be more randomly
distributed. It is important to note here that any tendency towards
systematic misclassification, not only the correct identification of
super-ordinates, is reflected in an increased metric content. For
example, if a subject systematically confuses American Politicians
with Italian Actors and Singers, due to their good looks, the
corresponding l value will be larger. Furthermore, subjects might
be able to detect similarities in the data set that are more fine-
grained than the explicit super-ordinates of nationality and field of
activity: for example they could be prone to confuse Italian
Politicians with Other European Politicians, but not with American
Politicians. For these reasons, l appears to represent a more
effective and model-free measure of perceived semantic structure
than the mere access to super-ordinate information.

We have found a significant effect of age on the metric content,
shown in Fig. 26b, indicative of a shift from episodic to semantic
access in older subjects; as well as a significant correlation between
the metric content and relevant measures assessing episodic and
semantic retrieval mode in the Remember (R)/Know (K) paradigm
introduced by Tulving (1985) (Ciaramelli et al., 2006).

Metric content analysis can also be applied to neuronal
representations, for example of spatial view by neurons in the
hippocampus (Treves et al., 1999a). It would be of interest to apply
it to neuronal representations in the inferior temporal visual
cortex, in which while responding differently to different members
within a category of, e.g. faces, also reflect categorical structure by
for example not responding to non-faces, or to inanimate objects,
etc (Rolls and Tovee, 1995; Rolls et al., 1997c; Kiani et al., 2007)
(see example in Fig. 6).

3.5.3. Metric content increases with Alzheimer’s but not with

semantic dementia

A shifting balance between semantic and episodic memory can
be assessed also by studying different groups of brain injured
patients, who have been shown to present with distinct memory
impairments. Patients with Alzheimer’s Disease (AD), with often
salient medial-temporal lobe (MTL) damage, typically show a shift
in the character of their autobiographical memories, about which
they provide semantic information more easily than they can re-
access the contextual details (Piolino et al., 2003; Westmacott
et al., 2001), reinforcing the notion that the MTL contributes the
episodic flavour to such memories (Eichenbaum, 2006; Moscovitch
et al., 2006). Semantic dementia patients, instead, with usually
more lateral temporal cortex atrophy (Graham and Hodges, 1997;
Lauro-Grotto et al., 1997b), typically show more impairment in
their knowledge of common facts, with relatively preserved
autobiographic and episodic information.

The metric content analysis was applied to AD patients and to a
group of herpes simplex encephalitis (HES) patients by Lauro-
Grotto et al. (2007). AD patients as well as HSE patients
demonstrated both lower mean mutual information and a lower
mean percent correct than their control subjects. Mean values for I

and fcorr remained almost unvaried from the first to a second
testing session (administered 10 months later) for AD patients,
whereas HSE patients got significantly worse in the second
compared to the first session. As the test includes famous faces
from different epochs (the 50s, the 70s and the 90s), while AD
patients as expected remembered older faces relatively better than
HSE patients who were on average younger, neither group
performed differently in this respect from their age-matched
controls. In contrast, the metric content l was significantly higher
in AD patients compared to controls at the first testing session, and
it tended to increase from the first to the second session,
emphasizing the difference between patients and age-matched
controls at the second testing session. As Fig. 26c shows, while all
the control subjects and 7 of the AD patients are placed in the
median area of the leaf diagram, 4 patients are placed even above
the upper reference value l = 1. In contrast to AD patients, HSE
patients showed a marginally lower metric content than their
controls, in both testing sessions (Fig. 26d).

The two patient groups were therefore both characterized by a
decrease in person-related knowledge compared to their controls,
in line with previous evidence. A dissociation was however
observed with respect to metric content, indicating that their
preferred access mode was quite different. AD patients, usually
characterized by a precocious involvement of hippocampal
cortices in the neurodegenerative process, showed a marked
increase in metric content, indicating a shift to semantic access
mode, supporting the notion that episodic access to knowledge,
perhaps the default mode, is mediated by MTL structures. The
metric content further increased over time, indicating that this
measure can track the progress of the disease, which is known to
result in progressive hippocampal volume loss and related episodic
impairment (Gilboa et al., 2005). Metric content then provides a
description of the memory changes associated with AD, as it
correlates with measures of the severity of dementia (note that the
sample was rather heterogeneous with respect to the severity of
the degenerative process, resulting in a scattered distribution of
results). It could be that the increase in metric content observed in
AD patients may result not only from a shift to semantic access, but
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Fig. 26. The responses by human subjects can be conveniently displayed on the leaf diagram (a) indicating metric content. Control subjects (b) respond with considerable

scatter, but average values show that older adults (OA, in their 60s) while significantly impaired with respect to young adults (YA, in their 40s) and middle-aged adults (MAA,

in their 50s) both in terms of information and percent correct recognition, demonstrate significantly higher metric content in their memory for famous faces. Alzheimer

patients (c) are significantly impaired with respect to an age- and education-matched control group, but even higher in metric content; upon retesting 10 months later their

metric content increases further (average values for each cohort are those with error bars). Herpes Simplex Encephalitis patients (d, HSE) are significantly more impaired at

retesting, and their metric content is slightly below that of matched controls (Lauro-Grotto et al., 2007).
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also from a progressive loss of subordinate information in semantic
memory representations, which is also typical of the disease.

Herpetic patients, while showing a similarly poor long-term
memory performance, decreased somewhat in metric content
compared to normal controls. Thus, HSE patients seem to resort to
a preferred episodic access mode to person-related knowledge,
consistent with the idea that the lateral temporal neocortex,
commonly damaged in this condition, contributes to the retrieval
of semantic information. This is consistent with evidence that
these patients, with typically preserved MTL structures, show a
preferential sparing of information about personally known
individuals relative to equally famous celebrities of no personal
significance (Westmacott et al., 2001). These findings suggest that
person-related knowledge after temporal neocortex damage
becomes more episodic than semantic in nature, and together
with those on AD patients (Lauro-Grotto et al., 2007) and on
normal ageing control subjects (Ciaramelli et al., 2006) they
provide an information-theoretic description of the role of the
medial temporal lobes and of the lateral temporal cortex,
respectively, for the episodic and semantic routes to memory
retrieval.

3.6. Predictions of decisions or subjective states from fMRI activations

and local field potentials

3.6.1. The information from multiple voxels with functional

neuroimaging

Analogous questions to those addressed above about neuronal
encoding are now being asked with respect to data from functional
neuroimaging investigations. These questions include how well it
is possible to predict which stimulus has been shown, or which
decision will be taken, by measuring the activity in the voxels of
activity typically 1 mm3 or larger which are usually analyzed in
humans (Haynes and Rees, 2005a,b, 2006; Pessoa and Padmala,
2005; Lau et al., 2006; Haynes et al., 2007; Hampton and
O’Doherty, 2007). Some of the findings are that, for example,
when subjects held in mind in a delay period which of two tasks,
addition or subtraction, they intended to perform, then it was
possible to decode or predict whether addition or subtraction
would be performed from a set of medial prefrontal cortex voxels
within a radius of 3 voxels with a linear support vector classifier
with accuracies in the order of 70%, where chance was 50% (Haynes
et al., 2007).

Most of these studies have used the percentage of correct
predictions as the measure. However, percentage correct does not
allow quantitative and well founded approaches to fundamental
issues of the type that can be addressed with information theory.
These issues include the amount of information provided by any
one voxel in a metric, of mutual information, that can be
quantitatively compared with measurements at other levels such
as the behavioural level, and the performance of single neurons or
populations of neurons; whether each voxel carries independent
information or whether there is redundancy; how the information
obtained scales with the number of voxels considered; whether
combining voxels from different brain areas yields more informa-
tion than taking the same number of voxels from one brain area;
and whether there is significant information about the stimulus or
subjective state or prospective rating in the stimulus-dependent
cross-correlations between the voxels, i.e. in the higher order
statistics. An example of the latter might be that independently of
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the mean level of activation of a set of voxels, if some voxels varied
together for one event, but not for another, then that could
potentially encode information about which event was present.

To bring information theory to bear on these issues, we have
adapted our decoding approach illustrated in Fig. 4 to the analysis
of neuroimaging and related types of data. In Fig. 4 the rates and
correlations for cells are replaced by the activations of selected
voxels, and the cross-correlations between the voxels, measured
on every trial (Rolls et al., 2009). Then the same information
analysis methods used for single neurons can be applied to the
activations of voxels in an fMRI study, or to local field potentials, or
to other measures of brain activity. The details of the methods are
described by Rolls et al. (2009).

We applied this information theoretic approach to investigate
how well one can predict the subjective state that will be reported
later in a trial from the fMRI BOLD (functional magnetic resonance
imaging blood oxygenation-level dependent) activations earlier in
the trial to a set of different affective stimuli (Rolls et al., 2009). The
subjective pleasantness produced by warm and cold applied to the
hand could be predicted on single trials with typically in the range
60–80% correct from the activations of groups of voxels in the
orbitofrontal and medial prefrontal cortex and pregenual cingulate
cortex, and the information available was typically in the range
0.1–0.2 bits (with a maximum of 0.6 bits in the example in Fig. 27).
Fig. 27. Information from voxels in functional neuroimaging. (Top) The information av

unpleasant (	0) (left), together with the curve that would be produced if the voxels prov

(right) based on the activations in different numbers of voxels from the medial prefrontal

made by participant 1. Probability estimation was used for the information analysis show

asymptotic value. (Bottom) The medial prefrontal cortex area 10 region from which th

After Rolls et al. (2009).
The prediction was typically only a little better with multiple
voxels than with one voxel, with the information increasing very
sublinearly with the number of voxels up to typically 7 voxels.
Thus the information from different voxels was not independent,
and there was considerable redundancy across voxels. This
redundancy was present even when the voxels were from different
brain areas. The pairwise stimulus-dependent correlations be-
tween voxels, reflecting higher order interactions, did not encode
significant information.

For comparison, we showed that the activity of a single neuron
in the orbitofrontal cortex can predict with 90% correct and encode
0.5 bits of information about whether an affectively positive or
negative visual stimulus has been shown (Rolls et al., 2009), and
the information encoded by small numbers of neurons is typically
independent.

3.6.2. The information from neurons vs. that from voxels

What is the fundamental difference underlying the different
encoding by neurons and by voxels, and the ability to predict from
these? The fundamental difference it is proposed is that the
neurons, as the information processing computational elements of
the brain, each with one output signal, its spike train, use a code to
transmit information to other neurons that is rather powerful, in
that each neuron, at least up to a limited number of neurons,
ailable about whether the stimuli were pleasant (>0 on a scale from �2 to þ2) or

ided independent information (dashed line), and the percentage correct predictions

 cortex area 10 centred at [�4 66 2]. The prediction was for the ratings that would be

n, and the information based on maximum likelihood decoding produced the same

e voxels centred at [�4 66 2] were obtained.
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carries independent information. This is achieved in part by the
fact that the response profile of each neuron to a set of stimuli is
relatively uncorrelated with the response profiles of other neurons.
So at the neuron level, as this is how the information is transmitted
between the computing elements of the brain, there is a great
advantage to using an efficient code for the information
transmission, and this means that relatively large amounts of
information can be decoded from populations of single neurons,
and can be used to make good predictions.

However, there is no constraint of this type at all on the
activation of one voxel reflecting the activation of hundreds of
thousands of neurons, compared to the activation of another voxel,
as the average activity of vast numbers of neurons is not how
information is transmitted between the computing elements of the
brain. (If the neuronal density is taken as say 30,000 neurons/mm3

(Abeles, 1991; Rolls, 2008), then a 3 � 3 � 3 mm3 voxel would
contain 810,000 neurons.) Instead of the average activation (a
single scalar quantity), it is the direction of the vector comprised by
the firing of a population of neurons where the activity of each
neuron is one element of the vector that transmits the information
(Rolls, 2008). It is a vector of this type that each neuron receives,
with the length of the vector, set by the number of synapses onto
each neurons, typically of the order 10,000 for cortical pyramidal
cells. Now of course different voxels in a cortical area will tend to
have somewhat different activity, partly as a result of the effect of
self-organizing maps in the cortex which tends to place neurons
with similar responses close together in the map, and neurons with
different responses further apart in the map (Rolls, 2008). So some
information will be available about which stimulus was shown by
measuring the average activation in different parts of the map. But
the reason that this information is small in comparison to that
provided by neurons is that the voxel map (reflecting averages of
the activity of many hundreds of thousands of neurons) is not the
way that information is transmitted between the computing
elements of the brain. Instead it is the vector of neuronal activity
(where each element of the vector is the firing of a different
neuron) within each cortical area that is being used to transmit
information round the brain, and in which therefore an efficient
code is being used.

We also found that there was no significant information in the
stimulus-dependent cross-correlations between voxels. Given the
points made in the preceding paragraph, such higher order
encoding effects across voxels, where each voxel contains
hundreds of thousands of neurons, would not be expected. Even
at the neuronal level, under natural visual conditions when
attention is being paid and the brain is working normally to
segment and discriminate between stimuli embedded in complex
natural scenes, almost all the information, typically >95%, is
encoded in the firing rates, with very little in stimulus-dependent
cross-correlations between inferior temporal cortex neurons
(Aggelopoulos et al., 2005; Rolls, 2008).

Because the code provided by the firing rate of single neurons
is relatively independent, the code can never be read adequately
by any process that averages across many neurons (and synaptic
currents (Logothetis, 2008)), such as fMRI, local field potentials
(LFP), magnetoencephalography, etc (Magri et al., 2009; Ince
et al., 2010a; Quian Quiroga and Panzeri, 2009). Further, because
it is a major principle of brain function that information is
carried by the spiking of individual neurons each built to carry
as independent information as possible from the other neurons,
and because brain computation relies on distributed represen-
tations for generalization, completion, maintaining a memory,
etc (Rolls, 2008), methods that average across many let alone
hundreds of thousands of neurons will never reveal how
information is actually encoded in the brain, the subject of this
paper.
It is this independence of the information transmitted by
individual neurons that enables a population of neurons to encode
which individual face (Rolls et al., 1997b), which particular object
(Booth and Rolls, 1998), which particular spatial view (Rolls et al.,
1998), which particular head direction (Robertson et al., 1999) etc
has been shown. (If just categorization is the measure, e.g. was it a
face, object or spatial scene, then LFPs may reflect this, as they
represent local activity, and we know that there is localization on a
scale of 0.5–1 mm in what category is represented in IT cortex,
with these categories represented in spatially separate neuronal
clusters due to cortical self-organizing map principles (Rolls,
2008), which can be detected by LFP recording.)

If the average firing rate of a neuronal population, as it might be
reflected in a LFP from a single electrode in thalamic visual
processing, varies across time, for example when a movie is shown,
then a dynamical network may go into different states, with for
example the average firing rate of the input influencing gamma-
range oscillations generated by inhibitory-excitatory neural
interactions; and slow dynamic features – the time varying
structure – of the input reflected in slow LFP fluctuations (Mazzoni
et al., 2008). (The LFPs may reflect temporal changes of this type,
but information transmission in the brain relies on spikes
travelling along the axons of individual neurons to transmit
encoded information, not on local field potentials.)

In the primary visual cortex when a movie with changing
scenes is shown, the high gamma frequency power (60–100 Hz)
from a single electrode was correlated with the multiunit activity
(reflecting overall spiking from many neurons) recorded from the
same electrode and was influenced by which 2 s period of the
movie was being shown (0.22 bits of signal information); and low
frequency power in the LFP (<24 Hz) reflected the trial-by-trial
variability in the recordings (i.e. the noise correlation, which is not
related to the signal in the different movie scenes) and also
reflected some information about the stimulus (i.e. which 2 s
period of the movie was present) (Belitski et al., 2008, 2010). (This
is a small amount of information: less than the average that is
conveyed by each single IT face-selective neuron about which
particular face in a set of 20 faces was shown (0.36 bits (Rolls et al.,
1997c)), or about which of 65 face and non-face stimuli was seen
(0.58 bits (Rolls et al., 1997c) Fig. 1b), and much less than the 2.77
bits encoded by a population of 14 such single neurons about
which particular face in a set of 20 faces was shown (Rolls et al.,
1997b).) Although the neuronal firing and the LFP can vary
independently (Gieselmann and Thiele, 2008), there have been few
attempts to compare the information obtained from the popula-
tion code provided by a set of separate single neurons with that in
the LFP, though decoding accuracy even into semantic categories
(face, animal, place, known to be differentially localized, let alone
into the particular face etc) was increased very little by adding LFPs
to spike data from single temporal cortex neurons in humans
except for time windows so short that individual neurons rarely
spiked (Kraskov et al., 2007). (For a 200 ms time window, where
chance categorization was 33%, the decoding accuracy was
approximately 40% correct from the LFP, 54% from the spikes,
and 54% from the spikes and the LFP: see their Fig. 8.)

In summary, the information from single neurons can add
independently so that 14 neurons may convey several bits of
information, and this independence of the information provided by
different neurons is unlikely to be a property of how information
from different LFPs adds, and is not a property of how information
from voxels in neuroimaging data add (Rolls et al., 2009). It is the
spiking of large numbers of different neurons that connect to a
receiving neuron by separate synaptic weights that provides the
brain’s basis for information coding and exchange between
neurons (Fig. 18) (Rolls et al., 1997b; Rolls, 2008), not LFPs or
the activations of voxels, which reflect an average activity of
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hundreds or hundreds of thousands of neurons, not the indepen-
dent information that neurons encode (Rolls et al., 2009). We note
that LFPs can be used to measure the level of coherence between
populations, and that both firing rates and coherence complement
each other in the underlying neurodynamics (Deco and Rolls, in
preparation).

4. Conclusions on cortical neuronal encoding

The conclusions emerging from this set of information
theoretic analyses, many in cortical areas towards the end of
the ventral visual stream of the monkey, and others in the
hippocampus for spatial view cells (Rolls et al., 1998), in the
presubiculum for head direction cells (Robertson et al., 1999), in
the insular taste cortex for taste neurons, and in the orbitofrontal
cortex for olfactory and taste neurons (Rolls et al., 1996, 2010a),
are as follows.

The representation of at least some classes of objects in those
areas is achieved with minimal redundancy by cells that are
allocated each to analyze a different aspect of the visual
stimulus (Abbott et al., 1996; Rolls et al., 1997b) (as shown in
Sections 3.3 and 3.3.6). This minimal redundancy is what would
be expected of a self-organizing system in which different cells
acquired their response selectivities through processes that
include some randomness in the initial connectivity, and local
competition among nearby cells (Rolls, 2008). Towards the end
of the ventral visual stream redundancy may thus be effectively
minimized, a finding consistent with the general idea that one of
the functions of the early visual system is indeed that of
progressively minimizing redundancy in the representation of
visual stimuli (Attneave, 1954; Barlow, 1961). Indeed, the
evidence described in Sections 3.3, 3.3.6 and 2.3 shows that the
exponential rise in the number of stimuli that can be decoded
when the firing rates of different numbers of neurons are
analyzed indicates that the encoding of information using firing
rates (in practice the number of spikes emitted by each of a large
population of neurons in a short time period) is a very powerful
coding scheme used by the cerebral cortex, and that the
information carried by different neurons is close to independent
provided that the number of stimuli being considered is
sufficiently large.

Quantitatively, the encoding of information using firing rates
(in practice the number of spikes emitted by each of a large
population of neurons in a short time period) is likely to be far
more important than temporal encoding, in terms of the number of
stimuli that can be encoded. Moreover, the information available
from an ensemble of cortical neurons when only the firing rates are
read, that is with no temporal encoding within or between
neurons, is made available very rapidly (see Fig. 13 and
Section 2.3). Further, the neuronal responses in most ventral or
‘what’ processing streams of behaving monkeys show sustained
firing rate differences to different stimuli (see for example Fig. 5 for
visual representations, for the olfactory pathways Rolls et al.
(1996), for spatial view cells in the hippocampus Rolls et al. (1998),
and for head direction cells in the presubiculum Robertson et al.
(1999)), so that it may not usually be necessary to invoke temporal
encoding for the information about the stimulus. Further, as
indicated in Section 3.3.6, information theoretic approaches have
enabled the information that is available from the firing rate and
from the relative time of firing (synchronization) of inferior
temporal cortex neurons to be directly compared with the same
metric, and most of the information appears to be encoded in the
numbers of spikes emitted by a population of cells in a short time
period, rather than by the temporal synchronization of the
responses of different neurons when certain stimuli appear (see
Section 3.3.6 and Aggelopoulos et al. (2005)).
Information theoretic approaches have also enabled different
types of readout or decoding that could be performed by the brain
of the information available in the responses of cell populations to
be compared (Rolls et al., 1997b; Robertson et al., 1999). It has been
shown for example that the multiple cell representation of
information used by the brain in the inferior temporal visual
cortex (Rolls et al., 1997b; Aggelopoulos et al., 2005), olfactory
cortex (Rolls et al., 1996), hippocampus (Rolls et al., 1998), and
presubiculum (Robertson et al., 1999) can be read fairly efficiently
by the neuronally plausible dot product decoding, and that the
representation has all the desirable properties of generalization
and graceful degradation, as well as exponential coding capacity
(see Sections 3.3 and 3.3.6).

Information theoretic approaches have also enabled the
information available about different aspects of stimuli to be
directly compared. For example, it has been shown that inferior
temporal cortex neurons make explicit much more information
about what stimulus has been shown rather than where the
stimulus is in the visual field (Tovee et al., 1994), and this is part of
the evidence that inferior temporal cortex neurons provide
translation invariant representations. In a similar way, information
theoretic analysis has provided clear evidence that view invariant
representations of objects and faces are present in the inferior
temporal visual cortex, in that for example much information is
available about what object has been shown from any single trial
on which any view of any object is presented (Booth and Rolls,
1998).

Information theory has also helped to elucidate the way in
which the inferior temporal visual cortex provides a representation
of objects and faces, in which information about which object or
face is shown is made explicit in the firing of the neurons in such a
way that the information can be read off very simply by memory
systems such as the orbitofrontal cortex, amygdala, and perirhinal
cortex/hippocampal systems. The information can be read off
using dot product decoding, that is by using a synaptically
weighted sum of inputs from inferior temporal cortex neurons
(Rolls, 2008). Moreover, information theory has helped to show
that for many neurons considerable invariance in the representa-
tions of objects and faces are shown by inferior temporal cortex
neurons (e.g. Booth and Rolls (1998)). Information theory has also
helped to show that inferior temporal cortex neurons maintain
their object selectivity even when the objects are presented in
complex natural backgrounds (Aggelopoulos et al., 2005; Rolls,
2008).

Information theory has also enabled the information available
in neuronal representations to be compared with that available to
the whole animal in its behaviour (Zohary et al., 1994) (but see
Section 3.3.4).

Finally, information theory also provides a metric for directly
comparing the information available from neurons in the brain
with that available from single neurons and populations of neurons
in simulations of visual information processing (Rolls, 2008,
Chapter 4).

In summary, the evidence from the application of information
theoretic and related approaches to how information is encoded in
the visual, hippocampal, and olfactory cortical systems described
during behaviour leads to the following working hypotheses:

1. Much information is available about the stimulus presented in
the number of spikes emitted by single neurons in a fixed time
period, the firing rate.

2. Much of this firing rate information is available in short
periods, with a considerable proportion available in as little as
20 ms. This rapid availability of information enables the next
stage of processing to read the information quickly, and thus
for multistage processing to operate rapidly. This time is the
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order of time over which a receiving neuron might be able to
utilize the information, given its synaptic and membrane time
constants. In this time, a sending neuron is most likely to emit
0, 1, or 2 spikes.

3. This rapid availability of information is confirmed by popula-
tion analyses, which indicate that across a population on
neurons, much information is available in short time periods.

4. More information is available using this rate code in a short
period (of, e.g. 20 ms) than from just the first spike.

5. Little information is available by time variations within the
spike train of individual neurons for static visual stimuli (in
periods of several hundred milliseconds), apart from a small
amount of information from the onset latency of the neuronal
response. A static stimulus encompasses what might be seen in
a single visual fixation, what might be tasted with a stimulus in
the mouth, what might be smelled in a single breath, etc. For a
time-varying stimulus, clearly the firing rate will vary as a
function of time, with the firing rate coding system analyzed
here capable of encoding a stimulus shown for as little as
20 ms, and responding to changes in the stimuli on that
timescale.

6. Across a population of neurons, the firing rate information
provided by each neuron tends to be independent; that is, the
information increases approximately linearly with the number
of neurons. This applies of course only when there is a large
amount of information to be encoded, that is with a large
number of stimuli. The outcome is that the number of stimuli
that can be encoded rises exponentially in the number of
neurons in the ensemble. (For a small stimulus set, the
information saturates gradually as the amount of information
available from the neuronal population approaches that
required to code for the stimulus set.) This applies up to the
number of neurons tested and the stimulus set sizes used, but
as the number of neurons becomes very large, this is likely to
hold less well. An implication of the independence is that the
response profiles to a set of stimuli of different neurons are
uncorrelated.

7. The information in the firing rate across a population of
neurons can be read moderately efficiently by a decoding
procedure as simple as a dot product. This is the simplest type
of processing that might be performed by a neuron, as it
involves taking a dot product of the incoming firing rates with
the receiving synaptic weights to obtain the activation (e.g.
depolarization) of the neuron. This type of information
encoding ensures that the simple emergent properties of
associative neuronal networks such as generalization, comple-
tion, and graceful degradation (Rolls, 2008) can be realized
very naturally and simply.

8. There is little additional information to the great deal available
in the firing rates from any stimulus-dependent cross-
correlations or synchronization that may be present. Stimu-
lus-dependent synchronization might in any case only be
useful for grouping different neuronal populations, and would
not easily provide a solution to the binding problem in vision.
Instead, the binding problem in vision may be solved by the
presence of neurons that respond to combinations of features
in a given spatial position with respect to each other.

9. There is little information available in the order of the spike
arrival times of different neurons for different stimuli that is
separate or additional to that provided by a rate code. The
presence of spontaneous activity in cortical neurons facilitates
rapid neuronal responses, because some neurons are close to
threshold at any given time, but this also would make a spike
order code difficult to implement.

10. Analysis of the responses of single neurons to measure the
sparseness of the representation indicates that the represen-
tation is distributed, and not grandmother cell like (or local).
Moreover, the nature of the distributed representation, that it
can be read by dot product decoding, allows simple emergent
properties of associative neuronal networks such as generali-
zation, completion, and graceful degradation (Rolls, 2008) to be
realized very naturally and simply.

11. The representation is not very sparse in the perceptual systems
studied (as shown for example by the values of the single cell
sparseness as), and this may allow much information to be
represented. At the same time, the responses of different
neurons to a set of stimuli are decorrelated, in the sense that
the correlations between the response profiles of different
neurons to a set of stimuli are low. Consistent with this, the
neurons convey independent information, at least up to
reasonable numbers of neurons. The representation may be
more sparse in memory systems such as the hippocampus, and
this may help to maximize the number of memories that can be
stored in associative networks.

12. The nature of the distributed representation can be understood
further by the firing rate probability distribution, which has a
long tail with low probabilities of high firing rates. The firing
rate probability distributions for some neurons fit an
exponential distribution, and for others there are too few very
low rates for a good fit to the exponential distribution. An
implication of an exponential distribution is that this max-
imizes the entropy of the neuronal responses for a given mean
firing rate under some conditions. It is of interest that in the
inferior temporal visual cortex, the firing rate probability
distribution is very close to exponential if a large number of
neurons are included without scaling of the firing rates of each
neuron. An implication is that a receiving neuron would see an
exponential firing rate probability distribution.

13. The population sparseness ap, that is the sparseness of the
firing of a population of neurons to a given stimulus (or at one
time), is the important measure for setting the capacity of
associative neuronal networks. In populations of neurons
studied in the inferior temporal cortex, hippocampus, and
orbitofrontal cortex, it takes the same value as the single cell
sparseness as, and this is a situation of weak ergodicity that
occurs if the response profiles of the different neurons to a set
of stimuli are uncorrelated.

14. Although oscillations per se do not code information, they can
influence the transmission of information between cortical
areas if the oscillations are coherent and in phase, and can
increase the speed of processing within a cortical area by a
mechanism like stochastic resonance (Fries, 2005, 2009; Deco
and Rolls, in preparation; Smerieri et al., 2010; Buehlmann and
Deco, 2010; Wang, 2010).

Understanding the neuronal code, the subject of this paper, is
fundamental for understanding how memory and related percep-
tual systems in the brain operate, as follows:

Understanding the neuronal code helps to clarify what neuronal
operations would be useful in memory and in fact in most
mammalian brain systems (e.g. dot product decoding, that is
taking a sum in a short time of the incoming firing rates weighted
by the synaptic weights).

It clarifies how rapidly memory and perceptual systems in the
brain could operate, in terms of how long it takes a receiving
neuron to read the code.

It helps to confirm how the properties of those memory systems
in terms of generalization, completion, and graceful degradation
occur, in that the representation is in the correct form for these
properties to be realized (Rolls, 2008).

Understanding the neuronal code also provides evidence
essential for understanding the storage capacity of memory
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systems, and the representational capacity of perceptual systems
(Rolls, 2008).

Understanding the neuronal code is also important for
interpreting functional neuroimaging, for it shows that functional
imaging that reflects incoming firing rates and thus currents
injected into neurons, and probably not stimulus-dependent
synchronization, is likely to lead to useful interpretations of the
underlying neuronal activity and processing (Rolls et al., 2010b,c).
Of course, functional neuroimaging cannot address the details of
the representation of information in the brain (Rolls et al., 2009) in
the way that is essential for understanding how neuronal networks
in the brain could operate, for this level of understanding (in terms
of all the properties and working hypotheses described above)
comes only from an understanding of how single neurons and
populations of neurons encode information.

Finally, we remark that the neuronal encoding scheme used by
the brain is one reason for the tractability of the brain (Rolls, 2012),
in that the code can be read substantially from the firing rates of
individual neurons or relatively small populations of neurons
(Section 3 and Rolls, 2008, Appendix C). The deep computational
reason for this appears to be that neurons decode the information
by dot product decoding (Fig. 18), and the consequence is that each
of the independent inputs to a neuron adds information to what
can be categorized by the neuron (Rolls, 2008). The brain would
have been much less tractable if binary encoding of the type used
in a computer was used, as this is a combinatorial code, and any
single bit in the computer word, or any subset of bits, yields little
evidence on its own about the particular item being represented.
Further reasons why the brain is relatively tractable, and why rapid
progress in understanding many aspects of its functions is now
being made, are described by Rolls (2012).

5. Information theory terms – a short glossary

1. The amount of information, or surprise, in the occurrence of an
event (or symbol) si of probability P(si) is

IðsiÞ ¼ log21

PðsiÞ
¼ �log2PðsiÞ: (35)

(The measure is in bits if logs to the base 2 are used.) This is also

the amount of uncertainty removed by the occurrence of the

event.
2. The average amount of information per source symbol over the

whole alphabet (S) of symbols si is the entropy,

HðSÞ ¼ �
X

i

PðsiÞlog2PðsiÞ (36)

(or a priori entropy).
3. The probability of the pair of symbols s and s0 is denoted P(s, s 0),

and is P(s)P(s 0) only when the two symbols are independent.
4. Bayes theorem (given the output s0, what was the input s ?)

states that

Pðsjs0 Þ ¼ Pðs0 jsÞPðsÞ
Pðs0 Þ (37)

where P(s0|s) is the forward conditional probability (given the

input s, what will be the output s0 ?), and P(s|s 0) is the backward

(or posterior) conditional probability (given the output s0, what

was the input s ?). The prior probability is P(s).
5. Mutual information. Prior to reception of s0, the probability of

the input symbol s was P(s). This is the a priori probability of s.
After reception of s0, the probability that the input symbol was s

becomes P(s|s 0), the conditional probability that s was sent given
that s0 was received. This is the a posteriori probability of s. The
difference between the a priori and a posteriori uncertainties
measures the gain of information due to the reception of s0. Once
averaged across the values of both symbols s and s0, this is the
mutual information, or transinformation

IðS; S
0
Þ ¼

X
s;s0

Pðs; s
0 Þflog2

1

PðsÞ

	 

� log2

1

Pðsjs0 Þ

	 

g (38)

¼
X
s;s0

Pðs; s
0 Þlog2

Pðsjs0 Þ
PðsÞ

	 

:

Alternatively,

IðS; S
0
Þ ¼ HðSÞ � HðSjS

0
Þ: (39)

H(S|S
0
) is sometimes called the equivocation (of S with respect to S

0
).
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