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Introduction

In this chapter a computational approach to the function of the hippocampus in memory is described and compared to
other approaches. The theory is quantitative, and takes into account the internal- and systems-level connections of the
hippocampus, the effects on memory of damage to different parts of the hippocampus, and the responses of hippocampal
neurons recorded during memory tasks. The theory was developed by Rolls (1987, 1989b,c, 1990b, 1996b, 2008, 2016a),
Treves and Rolls (1992, 1994), and with other colleagues (Kesner and Rolls, 2015; Rolls and Kesner, 2006; Rolls and
Stringer, 2005; Rolls et al., 2002). The theory was preceded by work of Marr (1971) who developed a mathematical model,
which although not applied to particular networks within the hippocampus and dealing with binary neurons and binary
synapses, which utilized heavily the properties of the binomial distribution, was important in utilizing computational
concepts and in considering how recall could occur in a network with recurrent collateral connections. Analyses of these
autoassociation or attractor networks developed rapidly (Amit, 1989; Gardner-Medwin, 1976; Hopfield, 1982; Kohonen,
1977; Rolls and Treves, 1998; Treves and Rolls, 1991). Rolls (1987, 1989b, 1990b) produced a theory of the hippocampus
in which the CA3 neurons operated as an autoassociation memory to store episodic memories including object and place
memories, and the dentate granule cells operated as a preprocessing stage for this by performing pattern separation so that
the mossy fibers could act to set up different representations for each memory to be stored in the CA3 cells. He suggested
that the CA1 cells operate as a recoder for the information recalled from the CA3 cells to a partial memory cue, so that the
recalled information would be represented more efficiently to enable recall, via the backprojection synapses, of activity in
the neocortical areas similar to that which had been present during the original episode. At about the same time
McNaughton and Morris (1987) suggested that the CA3 network might be an autoassociation network, and that the mossy
fiber to CA3 connections might implement “detonator” synapses. The concepts that the diluted mossy fiber connectivity
might implement selection of a new random set of CA3 cells for each new memory, and that a direct perforant path input
to CA3 was needed to initiate retrieval were introduced by Treves and Rolls (1992). Since then, many investigators have
contributed to our understanding of hippocampal computation, with some of these approaches described in section
Comparison With Other Theories of Hippocampal Function and throughout the chapter.

qChange History: March 2016. ET Rolls updated the text and references to this chapter, and deleted Figure 8.

This is an update of E.T. Rolls, 1.33 – Computational Models of Hippocampal Functions. In: Learning and Memory: A Comprehensive Reference, edited by

John H. Byrne, Academic Press, Oxford, 2008, Pages 641–665.

Reference Module in Neuroscience and Biobehavioral Psychology http://dx.doi.org/10.1016/B978-0-12-809324-5.21025-0 1



A Theory of Hippocampal Function

Systems-Level Functions of the Hippocampus

Any theory of the hippocampus must state at the systems level what is computed by the hippocampus. Some of the relevant
evidence comes from the effects of damage to the hippocampus, the responses of neurons in the hippocampus during behavior,
and the systems-level connections of the hippocampus, which are described in more detail elsewhere (Rolls, 2008; Rolls and Kesner,
2006).

Evidence From the Effects of Damage to the Hippocampus
Damage to the hippocampus or to some of its connections such as the fornix in monkeys produces deficits in learning about the
places of objects and about the places where responses should be made (Buckley and Gaffan, 2000). For example, macaques and
humans with damage to the hippocampal system or fornix are impaired in object–place memory tasks in which not only the objects
seen, but where they were seen must be remembered (Banta Lavenex and Lavenex, 2009; Burgess et al., 2002; Crane and Milner,
2005; Gaffan, 1994). Posterior parahippocampal lesions in macaques impair even a simple type of object–place learning in which
the memory load is just one pair of trial-unique stimuli (Malkova and Mishkin, 2003). Furthermore, neurotoxic lesions that selec-
tively damage the primate hippocampus impair spatial scene memory, tested by the ability to remember where in a scene to touch
to obtain reward (Murray et al., 1998). Rats with hippocampal lesions are impaired in using environmental spatial cues to
remember particular places, to perform object–place memory tasks, or to bridge delays (Cassaday and Rawlins, 1997; Jarrard,
1993; Kesner et al., 2004; Kesner and Rolls, 2015; Martin et al., 2000; O’Keefe and Nadel, 1978). These memory functions are
important in event or episodic memory, in which the ability to remember what happened where on typically a single occasion
is important. In humans, functional neuroimaging shows that the hippocampal system is activated by allocentric spatial including
scene processing (Burgess, 2008; Chadwick et al., 2013; Hassabis et al., 2009; Maguire, 2014).

It will be suggested below that an autoassociation memory implemented by the CA3 neurons enables event or episodic memo-
ries to be formed by enabling associations to be formed between spatial and other including object representations.

The Necessity to Recall Information From the Hippocampus
Information stored in the hippocampus will need to be retrieved and affect other parts of the brain in order to be used. The infor-
mation about episodic events recalled from the hippocampus could be used to help form semantic memories (Kesner and Rolls,
2015; Rolls, 1989b,d, 2016a; Treves and Rolls, 1994). For example, remembering many particular journeys could help build
a geographical cognitive map in the neocortex. The hippocampus and neocortex would thus be complementary memory systems,
with the hippocampus being used for rapid, “on the fly,” unstructured storage of information involving activity potentially arriving
from many areas of the neocortex; while the neocortex would gradually build and adjust on the basis of much accumulating infor-
mation the semantic representation (McClelland et al., 1995; Moscovitch et al., 2005; Rolls, 1989b, 2016a; Treves and Rolls, 1994).
The present theory shows how information could be retrieved within the hippocampus, and how this retrieved information could
enable the activity in neocortical areas that was present during the original storage of the episodic event to be reinstated, thus imple-
menting recall, by using hippocampo-neocortical backprojections (see Fig. 1).

Systems-Level Neurophysiology of the Primate Hippocampus
The systems-level neurophysiology of the hippocampus shows what information could be stored or processed by the hippocampus.
To understand how the hippocampus works, it is not sufficient to state just that it can store informationdone needs to know what
information. The systems-level neurophysiology of the primate hippocampus has been reviewed (Rolls, 2016a; Rolls and Xiang,
2006), and a brief summary is provided here because it provides a perspective relevant to understanding the function of the human
hippocampus that is somewhat different from that provided by the properties of place cells in rodents, which have been reviewed
elsewhere (Hartley et al., 2014; Jeffery, 2011; Jeffery et al., 2004; Jeffery and Hayman, 2004; McNaughton et al., 1983; Muller et al.,
1991; Neunuebel and Knierim, 2012; O’Keefe, 1984; O’Keefe and Dostrovsky, 1971).

The primate hippocampus contains spatial view cells that respond when the monkey looks at a certain part of space, for example,
at one quadrant of a video monitor while the monkey is performing an object–place memory task in which he must remember
where on the monitor he has seen particular images (Rolls et al., 1989). Approximately 9% of the hippocampal neurons have
such spatial view fields, and about 2.4% combine information about the position in space with information about the object
that is in that position in space (Rolls et al., 1989). The representation of space is for the majority of hippocampal neurons in allo-
centric not egocentric coordinates (Feigenbaum and Rolls, 1991). These spatial view cells can be recorded while monkeys move
themselves round the test environment by walking (or running) on all fours (Georges-François et al., 1999; Robertson et al.,
1998; Rolls et al., 1997a, 1998). These hippocampal “spatial view neurons” respond significantly differently for different allocentric
spatial views and have information about spatial view in their firing rate, but do not respond differently just on the basis of eye
position, head direction, or place. If the view details are obscured by curtains and darkness, then some spatial view neurons (espe-
cially those in CA1 and less those in CA3) continue to respond when the monkey looks toward the spatial view field, showing that
these neurons can be updated for at least short periods by idiothetic (self-motion) cues including eye position and head direction
signals (Robertson et al., 1998; Rolls et al., 1997b). There is some evidence consistent in humans (Ekstrom et al., 2003) consistent
with these findings. In rodents, grid cells which have repeated peaks of “place” firing as the animal traverses a space are found in the
medial entorhinal cortex (Giocomo et al., 2011; Hafting et al., 2005; Moser et al., 2015). In primates, there is now evidence that
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there is an analogous but spatial view–based grid cell–like representation in the entorhinal cortex, with neurons having gridlike
firing as the monkey moves the eyes across a spatial scene (Killian et al., 2012). Further support for this type of representation
of space being viewed “out there” rather than where one is located as for rat place cells is that cells in the human entorhinal cortex
with spatial view gridlike properties have now been described (Jacobs et al., 2013).

A fundamental question about the function of the primate including human hippocampus is whether object as well as allocen-
tric spatial information is represented. To investigate this, Rolls et al. (2005) made recordings from single hippocampal formation
neurons while macaques performed an object–place memory task that required the monkeys to learn associations between objects,
and where they were shown in a room. Some neurons (10%) responded differently to different objects independent of location;
other neurons (13%) responded to the spatial view independent of which object was present at the location; and some neurons
(12%) responded to a combination of a particular object and the place where it was shown in the room. These results show
that there are separate as well as combined representations of objects and their locations in space in the primate hippocampus.
This is a property required in an episodic memory system, for which associations between objects and the places where they are
seen are prototypical. The results thus show that a requirement for a human episodic memory system, separate and combined
neuronal representations of objects and where they are seen “out there” in the environment, are present in the primate hippo-
campus (Rolls et al., 2005). What may be a corresponding finding in rats is that some rat hippocampal neurons respond on the
basis of the conjunction of location and odor (Wood et al., 1999).

Primate hippocampal neuronal activity has also been shown to be related to the recall of memories. In a one-trial object–place
recall task, images of an object in one position on a screen, and of a second object in a different position on the screen, were shown
successively. Then one of the objects was shown at the top of the screen, and the monkey had to recall the position in which it had
been shown earlier in the trial, and to touch that location (Rolls and Xiang, 2006). In addition to neurons that responded to the
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objects or places, a new type of neuronal response was found in which 5% of hippocampal neurons had place-related responses
when a place was being recalled by an object cue.

The primate anterior hippocampus (which corresponds to the rodent ventral hippocampus) receives inputs from brain regions
involved in reward processing such as the amygdala and orbitofrontal cortex (Kondo et al., 2005; Pitkanen et al., 2002; Rolls,
2015b). To investigate how this affective input may be incorporated into primate hippocampal function, Rolls and Xiang
(2005) recorded neuronal activity, while macaques performed a reward–place association task in which each spatial scene shown
on a video monitor had one location which if touched yielded a preferred fruit juice reward, and a second location which yielded
a less-preferred juice reward. Each scene had different locations for the different rewards. Out of 312 hippocampal neurons
analyzed, 18% responded more to the location of the preferred reward in different scenes and 5% to the location of the less-
preferred reward (Rolls and Xiang, 2005). When the locations of the preferred rewards in the scenes were reversed, 60% of 44
neurons tested reversed the location to which they responded, showing that the reward–place associations could be altered by
new learning in a few trials. The majority (82%) of these 44 hippocampal reward–place neurons tested did not respond to
object–reward associations in a visual discrimination object–reward association task. Thus the primate hippocampus contains
a representation of the reward associations of places “out there” being viewed, and this is a way in which affective information
can be stored as part of an episodic memory, and how the current mood state may influence the retrieval of episodic memories.
There is consistent evidence that rewards available in a spatial environment can influence the responsiveness of rodent place
neurons (Hölscher et al., 2003; Redila et al., 2014; Tabuchi et al., 2003).

Systems-Level Anatomy
The primate hippocampus receives inputs via the entorhinal cortex (area 28) and the highly developed parahippocampal gyrus
(areas TF and TH) as well as the perirhinal cortex from the ends of many processing streams of the cerebral association cortex,
including the visual and auditory temporal lobe association cortical areas, the prefrontal cortex, and the parietal cortex (Amaral,
1987; Andersen et al., 2007; Kondo et al., 2005; Lavenex et al., 2004; Suzuki and Amaral, 1994b; Van Hoesen, 1982; van Strien
et al., 2009) (see Fig. 1). The hippocampus is thus by its connections potentially able to associate together object and spatial repre-
sentations. In addition, the entorhinal cortex receives inputs from the amygdala, and the orbitofrontal cortex, which could provide
reward-related information to the hippocampus (Carmichael and Price, 1995; Kondo et al., 2005; Pitkanen et al., 2002; Stefanacci
et al., 1996; Suzuki and Amaral, 1994a).

The primary output from the hippocampus to neocortex originates in CA1 and projects to subiculum, entorhinal cortex, and
parahippocampal structures (areas TF-TH) as well as prefrontal cortex (Delatour and Witter, 2002; van Haeften et al., 2003; Van
Hoesen, 1982; Witter, 1993) (see Fig. 1), though there are other outputs (Kesner and Rolls, 2015; Rolls, 2016a).

The Operation of Hippocampal Circuitry as a Memory System

Hippocampal Circuitry (see Fig. 1; Amaral, 1993; Amaral and Witter, 1989; Andersen et al., 2007; Kondo et al., 2009; Lavenex et al.,
2004; Naber et al., 2001; Storm-Mathiesen et al., 1990; Witter, 2007; Witter et al., 2000b)
Projections from the entorhinal cortex layer 2 reach the granule cells (of which there are 106 in the rat) in the dentate gyrus, via the
perforant path (Witter, 1993). The granule cells project to CA3 cells via the mossy fibers (mf), which provide a sparse but possibly
powerful connection to the 3 � 105 CA3 pyramidal cells in the rat. Each CA3 cell receives approximately 50 mossy fiber inputs, so
that the sparseness of this connectivity is thus 0.005%. By contrast, there are many moredpossibly weakerddirect perforant path
inputs also from layer 2 of the entorhinal cortex onto each CA3 cell, in the rat of the order of 4 � 103. The largest number of
synapses (about 1.2 � 104 in the rat) on the dendrites of CA3 pyramidal cells is, however, provided by the (recurrent) axon collat-
erals of CA3 cells themselves (rc) (see Fig. 2). It is remarkable that the recurrent collaterals are distributed to other CA3 cells
throughout the hippocampus (Amaral et al., 1990; Amaral and Witter, 1989, 1995; Ishizuka et al., 1990), so that effectively the
CA3 system provides a single network, with a connectivity of approximately 2% between the different CA3 neurons given that
the connections are bilateral. Of considerable interest, the CA3–CA3 recurrent collateral system is even more extensive in macaques
than in rats (Kondo et al., 2009). In humans, there may be separate CA3 networks in the two hemispheres, for the left hippocampal
system specializes in language-based memories, whereas the right hippocampal system specializes in spatial memory (Banks et al.,
2012). The underlying computational reason for this is that language does not work by spatial locations, that is humans do not use
and need a word-place episodic memory. The neurons that comprise CA3, in turn, project to CA1 neurons via the Schaffer collat-
erals. In addition, projections that terminate in the CA1 region originate in layer 3 of the entorhinal cortex (see Fig. 1).

Dentate Granule Cells
The theory is that the dentate granule cell stage of hippocampal processing which precedes the CA3 stage acts in a number of ways to
produce during learning by pattern separation the sparse yet efficient (i.e., nonredundant) representation in CA3 neurons that is
required for the autoassociation implemented by CA3 to perform well (Kesner and Rolls, 2015; Rolls, 1989b, 1996b, 2008,
2013a,b, 2016a,b; Treves and Rolls, 1992). By pattern separation I mean that the correlations between different memory patterns
represented by a population of neurons become reduced.

The first way is that the perforant pathddentate granule cell system with its Hebb-like modifiability is suggested to act as
a competitive learning network to remove redundancy from the inputs producing a more orthogonal, sparse, and categorized
set of outputs (Rolls, 1987, 1989b, 2016a; Rolls and Treves, 1998) (competitive networks are described elsewhere (Hertz et al.,
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1991; Rolls, 2016a,b; Rolls and Treves, 1998), together with Matlab code to simulate them (Rolls, 2016a)). The nonlinearity in the
NMDA receptors may help the operation of such a competitive net, for it ensures that only the most active neurons left after the
competitive feedback inhibition have synapses that become modified and thus learn to respond to that input (Rolls, 2016a).
Because of the feedback inhibition, the competitive process may result in a relatively constant number of strongly active dentate
neurons relatively independent of the number of active perforant path inputs to the dentate cells. The operation of the dentate
granule cell system as a competitive network may also be facilitated by a Hebb rule of the form:

dwij ¼ k$ri
�
r0j � wij

�
(1)

where k is a constant, ri is the activation of the dendrite (the postsynaptic term), r0j is the presynaptic firing rate, wij is the synaptic
weight, and r0j and wij are in appropriate units (Rolls, 2016a). Incorporation of a rule such as this which implies heterosynaptic long-
term depression as well as long-term potentiation (see Levy et al., 1990; Levy and Desmond, 1985) makes the sum of the synaptic
weights on each neuron remain roughly constant during learning (cf. Oja, 1982; Rolls, 2016a; see Rolls and Treves, 1998).

This functionality could be used to help build hippocampal place cells in rats from the grid cells present in the medial entorhinal
cortex (Giocomo et al., 2011; Moser et al., 2015). Each grid cell responds to a set of places in a spatial environment, with the places
to which a cell responds set out in a regular grid. Different grid cells have different phases (positional offsets) and grid spacings (or
frequencies). We (Rolls et al., 2006) have simulated the dentate granule cells as a system that receives as inputs the activity of a pop-
ulation of entorhinal cortex grid cells as the animal traverses a spatial environment, and have shown that the competitive net builds
dentate-like place cells from such entorhinal grid cell inputs (see Fig. 3). This occurs because the firing states of entorhinal cortex
cells that are active at the same time when the animal is in one place become associated together by the learning in the competitive
net, yet each dentate cell represents primarily one place because the dentate representation is kept sparse, thus helping to implement
symmetry breaking (Rolls et al., 2006). The same competitive learning could, it is suggested (Rolls, 2013a), be involved in the
conversion of primate entorhinal spatial view grid cells (Killian et al., 2012) into primate spatial view cells.

With respect to the medial entorhinal cortex grid cells, there are a number of theories of their computational bases (Giocomo
et al., 2011). One attractive theory is that different temporal delays in the neural circuitry of the medial entorhinal cortex are related
to different temporal adaptation time courses, and result in the different sizes of spatial grids that are found in the medial entorhinal
cortex (Kropff and Treves, 2008). This is essentially a timing hypothesis; and it is an interesting new idea that the timing mechanism
that may be inherent in the medial entorhinal cortex might also be a source of the temporal delay information needed to form
sequence memories in CA1, using the direct projection from medial entorhinal cortex to CA1 to introduce timing information
in the form of neurons that fire at different temporal times in a sequence (Eichenbaum, 2014; Howard and Eichenbaum, 2015;
Howard et al., 2014; Macdonald et al., 2011), which is what is needed for the formation of odor, object, and spatial sequence
memories in CA1, and would also be useful in the formation of spatial grid cells in the entorhinal cortex.

The second way is also a result of the competitive learning hypothesized to be implemented by the dentate granule cells (Rolls,
1987, 1989b, 2016a). It is proposed that this allows overlapping (or very similar) inputs to the hippocampus to be separated, in the
following way (see also Rolls, 1996b). Consider three patterns B, W, and BW, where BW is a linear combination of B and W. (To
make the example very concrete, we could consider binary patterns where B ¼ 10, W ¼ 01, and BW ¼ 11.) Then the memory system
is required to associate B with reward, W with reward, but BW with punishment. Without the hippocampus, rats might have more
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Figure 2 The numbers of connections from three different sources onto each CA3 cell from three different sources in the rat. After Rolls, E.T.,
Treves, A., 1998. Neural Networks and Brain Function. Oxford University Press, Oxford; Treves, A., Rolls, E.T., 1992. Computational constraints
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difficulty in solving such problems, particularly when they are spatial, for the dentate–CA3 system in rodents is characterized by
being implicated in spatial memory. However, it is a property of competitive neuronal networks that they can separate such over-
lapping patterns, as has been shown elsewhere (Rolls, 2008, 2016a,b; Rolls and Treves, 1998); normalization of synaptic weight
vectors is required for this property. It is thus an important part of hippocampal neuronal network architecture that there is
a competitive network that precedes the CA3 autoassociation system. Without the dentate gyrus, if a conventional autoassociation
network were presented with the mixture BW having learned B and W separately, then the autoassociation network would produce
a mixed output state, and would therefore be incapable of storing separate memories for B, W, and BW. It was therefore suggested
that competition in the dentate gyrus is one of the powerful computational features of the hippocampus, and that could enable it to
help solve spatial pattern separation tasks (Rolls and Kesner, 2006).

This computational hypothesis and its predictions have been tested. Rats with dentate gyrus lesions are impaired at a metric
spatial pattern separation task (Gilbert et al., 2001; Goodrich-Hunsaker et al., 2005; Kesner and Rolls, 2015) (see Fig. 4). The recod-
ing of grid cells in the entorhinal cortex (Hafting et al., 2005) into small place field cells in the dentate granule cells that has been
modeled (Rolls et al., 2006) can also be considered to be a case where overlapping inputs must be recoded so that different spatial
components can be treated differently. I note that Sutherland and Rudy’s configural learning hypothesis was similar, but was not
tested with spatial pattern separation. Instead, when tested with, for example, tone and light combinations, it was not consistently
found that the hippocampus was important (O’Reilly and Rudy, 2001; Sutherland and Rudy, 1991). I suggest that application of the

Y
 n

od
e

Y
 n

od
e

10

20

30

40

50

60

70

80

90

100

10

20

30

40

50

60

70

80

90

100

Y
 n

od
e

10

20

30

40

50

60

70

80

90

100

Y
 n

od
e

10

20

30

40

50

60

70

80

90

100

(A)

(C) (D)

(B)

20 40
X node

Response field of EC grid cell

Entorhinal cortex grid cells

Dentate place cells

A computational model

Response field of EC grid cell

Response field of DG cellResponse field of DG cell

60 80 100

20 40 60 80 100

20 40
X node

60 80 100

20 40 60 80 100
X nodeX node
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configural concept, but applied to spatial pattern separation, may capture part of what the dentate gyrus acting as a competitive
network could perform, particularly when a large number of such overlapping spatial memories must be stored and retrieved.

The third way in which the dentate gyrus is hypothesized to contribute to the sparse and relatively orthogonal representations in
CA3 arises because of the very low contact probability in the mossy fiber–CA3 connections, and is described in section Mossy Fiber
Inputs to the CA3 Cells and Pattern Separation and by Treves and Rolls (1992).

A fourth way is that as suggested and explained in section Mossy Fiber Inputs to the CA3 Cells and Pattern Separation, the den-
tate granule celldmossy fiber input to the CA3 cells may be powerful and its use particularly during learning would be efficient in
forcing a new pattern of firing onto the CA3 cells during learning.

Fifth, expansion recoding can decorrelate input patterns, and this can be performed by a stage of competitive learning with a large
number of neurons (Rolls, 2016a). A similar mechanism appears to be implemented by the dentate granule cells, which are
numerous (1 � 106 in the rat, compared to 300,000 CA3 cells), have associatively modifiable synapses (required for a competitive
network), and strong inhibition provided by the inhibitory interneurons. This may not represent expansion of numbers relative to
the number of entorhinal cortex cells, but the principle of a large number of dentate granule cells, with competitive learning and
strong inhibition through inhibitory interneurons, would produce a decorrelation of signals like that achieved by expansion recod-
ing (Rolls, 2008, 2013a).

Sixth, adult neurogenesis in the dentate gyrus may perform the computational role of facilitating pattern separation for new
patterns, by providing new dentate granule cells with new sets of random connections to CA3 neurons (Deng et al., 2010; Rolls,
2010). Consistent with the dentate spatial pattern separation hypothesis (Kesner and Rolls, 2015; Rolls, 1989b, 1996b, 2016a;
Treves and Rolls, 1992, 1994), in mice with impaired dentate neurogenesis, spatial learning in a delayed nonmatching-to-place
task in the radial arm maze was impaired for arms that were presented with little separation, but no deficit was observed when
the arms were presented farther apart (Clelland et al., 2009). Consistently, impaired neurogenesis in the dentate also produced
a deficit for small spatial separations in an associative object-in-place task (Clelland et al., 2009).

In the ways just described, the dentate granule cells could be particularly important in helping to build and prepare spatial repre-
sentations for the CA3 network. The actual representation of space in the primate hippocampus includes a representation of spatial
view, whereas in the rat hippocampus it is of the place where the rat is. The representation in the rat may be related to the fact that
with a much less-developed visual system than the primate, the rat’s representation of space may be defined more by the olfactory
and tactile as well as distant visual cues present, and may thus tend to reflect the place where the rat is. However, the spatial repre-
sentations in the rat and primate could arise from essentially the same computational process as follows (de Araujo et al., 2001;
Rolls, 1999). The starting assumption is that in both the rat and the primate, the dentate granule cells (and the CA3 and CA1 pyra-
midal cells) respond to combinations of the inputs received. In the case of the primate, a combination of visual features in the envi-
ronment will, because of the fovea providing high spatial resolution over a typical viewing angle of perhaps 10–20 degrees, result in
the formation of a spatial view cell, the effective trigger for which will thus be a combination of visual features within a relatively
small part of space. In contrast, in the rat, given the very extensive visual field subtended by the rodent retina, whichmay extend over
180–270 degrees, a combination of visual features formed over such a wide visual angle would effectively define a position in space
that is a place (de Araujo et al., 2001).

Although spatial view cells are present in the parahippocampal areas (Georges-François et al., 1999; Robertson et al., 1998; Rolls
et al., 1997a, 1998), and neurons with placelike fields (often as grid cells (Moser et al., 2015)) are found in the medial entorhinal
cortex, there are backprojections from the hippocampus to the entorhinal cortex and thus to parahippocampal areas, and these
backprojections could enable the hippocampus to influence the spatial representations found in the entorhinal cortex and parahip-
pocampal gyrus. On the other hand, as described earlier, the gridlike place cells in the medial entorhinal cortex could, if transformed
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by the competitive net functionality of the dentate cells, result in the place cell activity (without a repeating grid) that is found in
dentate and rat hippocampal neurons.

In primates, spatial view cells represent a scene view allocentrically, as described in section Systems-Level Neurophysiology of the
Primate Hippocampus. How could such spatial view representations be formed, in which the relative spatial position of features in
a scene is encoded? We have proposed that this involves competitive learning analogous to that used to form place cells in rats, but
in primates operating on the representations of objects that reach the hippocampus from the inferior temporal visual cortex (Rolls,
2012b, 2016a). Rolls et al. (2008) have demonstrated in a unifying computational approach that competitive network processes
operating in areas such as the parahippocampal cortex, the entorhinal cortex, and/or the dentate granule cells could form unique
views of scenes by forming a sparse representation of these object- or feature-tuned inferior temporal cortex ventral visual stream
representations that have some spatial asymmetry.

CA3 as an Autoassociation Memory
Arbitrary Associations and Pattern Completion in Recall

Many of the synapses in the hippocampus show associative modification as shown by long-term potentiation, and this synaptic
modification appears to be involved in learning (see Andersen et al., 2007; Jackson, 2013; Lynch, 2004; Morris, 1989, 2003; Morris
et al., 2003; Nakazawa et al., 2004; Nakazawa et al., 2003; Wang and Morris, 2010). On the basis of the evidence summarized
earlier, Rolls (1987, 1989b, 1991, 2013b, 2016a) and others (Levy, 1989; McNaughton, 1991; McNaughton and Morris, 1987)
have suggested that the CA3 stage acts as an autoassociation memory, which enables episodic memories to be formed and stored
in the CA3 network, and that subsequently the extensive recurrent collateral connectivity allows for the retrieval of a whole repre-
sentation to be initiated by the activation of some small part of the same representation (the cue). The crucial synaptic modification
for this is in the recurrent collateral synapses. A description of the operation of autoassociative networks is provided elsewhere
(Hertz et al., 1991; Rolls, 2016a; Rolls and Treves, 1998). The architecture of an autoassociation network is shown in Fig. 4, and
the learning rule is as shown in Eq. (1) except that the subtractive term could be the presynaptic firing rate (Rolls, 2016a; Rolls
and Treves, 1998).

The hypothesis is that because the CA3 operates effectively as a single network, it can allow arbitrary associations between
inputs originating from very different parts of the cerebral cortex to be formed. These might involve associations between infor-
mation originating in the temporal visual cortex about the presence of an object, and information originating in the parietal
cortex about where it is. I note that although there is some spatial gradient in the CA3 recurrent connections, so that the connec-
tivity is not fully uniform (Ishizuka et al., 1990; Witter, 2007), nevertheless the network will still have the properties of a single
interconnected autoassociation network allowing associations between arbitrary neurons to be formed, given the presence of
many long-range connections which overlap from different CA3 cells. It is very interesting indeed that in primates (macaques),
the associational projections from CA3 to CA3 travel extensively along the longitudinal axis, and overall the radial, transverse,
and longitudinal gradients of CA3 fiber distribution, clear in the rat, are much more subtle in the nonhuman primate brain
(Kondo et al., 2009). The implication is that in primates, the CA3 network operates even more as a single network than in
rodents.

Crucial issues include howmany memories could be stored in this system (to determine whether the autoassociation hypothesis
leads to a realistic estimate of the number of memories that the hippocampus could store); whether the whole of a memory could be
completed from any part; whether the autoassociation memory can act as a short-term memory, for which the architecture is inher-
ently suited, and whether the system could operate with spatial representations, which are essentially continuous because of the
continuous nature of space. These and related issues are considered in the remainder of section CA3 as an Autoassociation Memory
and in more detail elsewhere (Rolls, 2008; Rolls and Kesner, 2006).

Storage Capacity
We have performed quantitative analyses of the storage and retrieval processes in the CA3 network (Treves and Rolls, 1991,
1992). We have extended previous formal models of autoassociative memory (see Amit, 1989; Hopfield, 1982) by analyzing
a network with graded response units, so as to represent more realistically the continuously variable rates at which neurons
fire, and with incomplete connectivity (Treves, 1990; Treves and Rolls, 1991). We have found that in general the maximum
number pmax of firing patterns that can be (individually) retrieved is proportional to the number CRC of (associatively) modifi-
able recurrent collateral synapses per cell, by a factor that increases roughly with the inverse of the sparseness a of the neuronal
representation.1 The sparseness of response (or selectivity) of a single cell to a set of stimuli (which in the brain has approxi-
mately the same value as the sparseness of the response of the population of neurons to any one stimulus, which can in turn
be thought of as the proportion of neurons that is active to any one stimulus if the neurons had binary responses, see Franco
et al., 2007) is defined as

a ¼
 X

i¼1;n

ri=n

!2,X
i¼1;n

�
r2i
�
n
�

(2)

1Each memory is precisely defined in the theory: it is a set of firing rates of the population of neurons (which represent a memory) that can be stored and later

retrieved, with retrieval being possible from a fraction of the originally stored set of neuronal firing rates.
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where ri is the firing rate to the i’th stimulus in the set of n stimuli. The sparseness ranges from 1/n, when the cell responds to only
one stimulus, to a maximal value of 1.0, attained when the cell responds with the same rate to all stimuli. Approximately,

pmaxy
CRC

a lnð1=aÞ k (3)

where k is a factor that depends weakly on the detailed structure of the rate distribution, on the connectivity pattern, etc., but is
roughly in the order of 0.2–0.3 (Treves and Rolls, 1991). [The sparseness a in this equation is strictly the population sparseness
(Franco et al., 2007; Treves and Rolls, 1991). The population sparseness ap would be measured by measuring the distribution of
firing rates of all neurons to a single stimulus at a single time. The single cell sparseness or selectivity as would be measured by the
distribution of firing rates to a set of stimuli, which would take a long time. These concepts are elucidated by Franco et al. (2007).
The sparseness estimates obtained by measuring early gene changes, which are effectively population sparsenesses, would thus be
expected to depend greatly on the range of environments or stimuli in which this was measured. If the environment was restricted to
one stimulus, this would reflect the population sparseness. If the environment was changing, the measure from early gene changes
would be rather undefined, as all the populations of neurons activated in an undefined number of testing situations would be likely
to be activated.] For example, for CRC ¼ 12,000 and a ¼ 0.02, pmax is calculated to be approximately 36,000. This analysis
emphasizes the utility of having a sparse representation in the hippocampus, for this enables many different memories to be stored.
Third, for most associative networks to store information efficiently, heterosynaptic long-term depression (as well as LTP) is
required (Collingridge et al., 2010; Fazeli and Collingridge, 1996; Rolls, 2016a; Rolls and Treves, 1990, 1998; Treves and Rolls,
1991). Simulations that are fully consistent with the analytical theory are provided by Rolls (1995, 2012a), Simmen et al. (1996),
and Rolls et al. (1997b).

We have also indicated how to estimate I, the total amount of information (in bits per synapse) that can be retrieved from the
network. I is defined with respect to the information ip (in bits per cell) contained in each stored firing pattern, by subtracting the
amount il lost in retrieval and multiplying by p/CRC:

I ¼ p
CRC

�
ip � ii

�
(4)

The maximal value Imax of this quantity was found (Treves and Rolls, 1991) to be in several interesting cases around 0.2–0.3 bits
per synapse, with only a mild dependency on parameters such as the sparseness of coding a.

We may then estimate (Treves and Rolls, 1992) how much information has to be stored in each pattern for the network to effi-
ciently exploit its information retrieval capacity Imax. The estimate is expressed as a requirement on ip:

ip > a lnð1=aÞ (5)

As the information content of each stored pattern ip depends on the storage process, we see how the retrieval capacity analysis,
coupled with the notion that the system is organized so as to be an efficient memory device in a quantitative sense, leads to
a constraint on the storage process.

A number of points that arise are treated elsewhere (Kesner and Rolls, 2015; Rolls, 2016a). Here I note that given that the
memory capacity of the hippocampal CA3 system is limited, it is necessary to have some form of forgetting in this store, or other
mechanism to ensure that its capacity is not exceeded. (Exceeding the capacity can lead to a loss of much of the information retriev-
able from the network.) Heterosynaptic LTD could help this forgetting, by enabling new memories to overwrite old memories (Kes-
ner and Rolls, 2015; Rolls, 1996a, 2016a). The limited capacity of the CA3 system does also provide one of the arguments that some
transfer of information from the hippocampus to neocortical memory stores may be useful (see Treves and Rolls, 1994). Given its
limited capacity, the hippocampus might be a useful store for only a limited period, which might be in the order of days, weeks, or
months. This period may well depend on the acquisition rate of new episodic memories. If the animal were in a constant and
limited environment, then as new information is not being added to the hippocampus, the representations in the hippocampus
would remain stable and persistent. These hypotheses have clear experimental implications, both for recordings from single
neurons and for the gradient of retrograde amnesia, both of which might be expected to depend on whether the environment is
stable or frequently changing. They show that the conditions under which a gradient of retrograde amnesia might be demonstrable
would be when large numbers of new memories are being acquired, not when only a few memories (few in the case of the hippo-
campus being less than a few hundred) are being learned.

Recall
A fundamental property of the autoassociation model of the CA3 recurrent collateral network is that the recall can be symmet-
rical, that is, the whole of the memory can be retrieved from any part. For example, in an object–place autoassociation memory,
an object could be recalled from a place retrieval cue, and vice versa. This is not the case with a pattern association network. If, for
example, the CA3 activity represented a place/spatial view, and perforant path inputs with associative synapses to CA3 neurons
carried object information [consistent with evidence that the lateral perforant path (LPP) may reflect inputs from the perirhinal
cortex connecting via the lateral entorhinal cortex (Hargreaves et al., 2005)], then an object could recall a place, but a place could
not recall an object.
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A prediction of the theory is thus that the CA3 recurrent collateral associative connections enable arbitrary associations to be
formed between whatever is represented in the hippocampus, in that, for example, any place could be associated with any object,
and in that the object could be recalled with a spatial recall cue, or the place with an object recall cue.

In one test of this, Day et al. (2003) trained rats in a study phase to learn in one trial an association between two flavors of food
and two spatial locations. During a recall test phase, they were presented with a flavor which served as a cue for the selection of the
correct location. They found that injections of an NMDA blocker (AP5) or AMPA blocker (CNQX) to the dorsal hippocampus prior
to the study phase impaired encoding, but injections of AP5 prior to the test phase did not impair the place recall, whereas injections
of CNQX did impair the place recall. The interpretation is that somewhere in the hippocampus, NMDA receptors are necessary for
forming one-trial odor–place associations, and that recall can be performed without further involvement of NMDA receptors.

In a hippocampus subregion test of this, rats in a study phase are shown one object in one location, and then a second object in
another location. (There are 50 possible objects, and 48 locations.) In the test phase, the rat is shown one object in the start box, and
then after a 10 s delay it must go to the correct location (choosing between two marked locations). CA3 lesions made after training
in the task produced chance performance on this one-trial object–place recall task (Kesner et al., 2008; Kesner and Rolls, 2015). A
control-fixed visual conditional to place task with the same delay was not impaired, showing that it is a recall after one-trial (or
rapid) learning that is impaired. In the context of arbitrary associations between whatever is represented in CA3, the theory also
predicts that cued place–object recall tasks and cued place–odor recall tasks should be impaired by CA3 lesions.

Evidence that the CA3 system is not necessarily required during recall in a reference memory spatial task, such as the water maze
spatial navigation for a single spatial location task, is that CA3-lesioned rats are not impaired during recall of a previously learned
water maze task (Brun et al., 2002; Florian and Roullet, 2004). However, if completion from an incomplete cue is needed, then CA3
NMDA receptors are necessary (presumably to ensure satisfactory CA3–CA3 learning) even in a reference memory task (Nakazawa
et al., 2002). Thus, the CA3 system appears to be especially needed in rapid, one-trial object–place recall, and when completion
from an incomplete cue is required.

In a neurophysiological investigation of one-trial object–place learning followed by recall of the spatial position in which to
respond when shown the object, Rolls and Xiang (2006) showed that some primate hippocampal (including CA3) neurons respond
to an object cue with the spatial position in which the object had been shown earlier in the trial. Thus, some hippocampal neurons
appear to reflect spatial recall given an object recall cue.

Completion
Another fundamental property is that the recall can be complete even from a small fragment. Thus, it is a prediction that when an
incomplete retrieval cue is given, CA3 may be especially important in the retrieval process. Tests of this prediction of a role for CA3
in pattern completion have been performed as follows (Kesner and Rolls, 2015). Rats were tested on a cheese board with a black
curtain with four extramaze cues surrounding the apparatus. (The cheese board is like a dry land water maze with 177 holes on
a 119 cm diameter board.) Rats were trained to move a sample phase object covering a food well that could appear in one of
five possible spatial locations. During the test phase of the task, following a 30 s delay, the animal needs to find the same food
well to receive reinforcement with the object now removed. After reaching stable performance in terms of accuracy to find the correct
location, rats received lesions in CA3. During postsurgery testing, four extramaze cues were always available during the sample
phase. However, during the test phase zero, one, two, or three cues were removed in different combinations. The results indicate
that controls performed well on the task regardless of the availability of one, two, three, or all cues, suggesting intact spatial pattern
completion. Following the CA3 lesion, however, there was an impairment in accuracy compared to the controls especially when
only one or two cues were available, suggesting impairment in spatial pattern completion in CA3-lesioned rats (Gold and
Kesner, 2005) (see Fig. 6). A useful aspect of this task is that the test for the ability to remember a spatial location learned in
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Figure 5 The architecture of a continuous attractor neural network. The architecture is the same as that of a discrete attractor neural network.
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one presentation can be tested with varying number of available cues, and many times in which the locations vary, to allow for
accurate measurement of pattern completion ability when the information stored on the single presentation must be recalled.

In another study Nakazawa et al. (2002) trained CA3NMDA receptor-knockout mice in an analogous task, using the water maze.
When the animals were required to perform the task in an environment where some of the familiar cues were removed, they were
impaired in performing the task. The result suggests that the NMDA receptor–dependent synaptic plasticity mechanisms in CA3 are
critical to perform the pattern completion process in the hippocampus.

Continuous, Spatial, Patterns, and CA3 Representations

The fact that spatial patterns, which imply continuous representations of space, are represented in the hippocampus has led
to the application of continuous attractor models to help understand hippocampal function. This has been necessary, because
space is inherently continuous, because the firing of place and spatial view cells is approximately Gaussian as a function of
the distance away from the preferred spatial location, because these cells have spatially overlapping fields, and because the
theory is that these cells in CA3 are connected by Hebb-modifiable synapses. This specification would inherently lead the
system to operate as a continuous attractor network. Continuous attractor network models have been studied by Amari
(1977), Zhang (1996), Taylor (1999), Samsonovich and McNaughton (1997), Battaglia and Treves (1998a), Stringer et al.
(2002a,b), Stringer et al. (2004), Stringer and Rolls (2002), and Rolls and Stringer (2005) (see Rolls, 2016a) and are
described next.

A “continuous attractor” neural network (CANN) can maintain the firing of its neurons to represent any location along a contin-
uous physical dimension such as spatial position, head direction, etc. It uses excitatory recurrent collateral connections between the
neurons (as are present in CA3) to reflect the distance between the neurons in the state space of the animal (e.g., place or head direc-
tion). These networks can maintain the bubble of neural activity constant for long periods wherever it is started to represent the
current state (head direction, position, etc.) of the animal, and are likely to be involved in many aspects of spatial processing
and memory, including spatial vision. Global inhibition is used to keep the number of neurons in a bubble or packet of actively
firing neurons relatively constant, and to help ensure that there is only one activity packet. Continuous attractor networks can be
thought of as very similar to autoassociation or discrete attractor networks (Rolls, 2016a), and have the same architecture, as illus-
trated in Fig. 5. The main difference is that the patterns stored in a CANN are continuous patterns, with each neuron having broadly
tuned firing which decreases with, for example, a Gaussian function as the distance from the optimal firing location of the cell is
varied, and with different neurons having tuning that overlaps throughout the space. Such tuning is illustrated in Fig. 7. For compar-
ison, autoassociation networks normally have discrete (separate) patterns (each pattern implemented by the firing of a particular
subset of the neurons), with no continuous distribution of the patterns throughout the space (see Fig. 7). A consequent difference is
that the CANN canmaintain its firing at any location in the trained continuous space, whereas a discrete attractor or autoassociation
networkmoves its population of active neurons toward one of the previously learned attractor states, and thus implements the recall
of a particular previously learned pattern from an incomplete or noisy (distorted) version of one of the previously learned patterns.

The energy landscape of a discrete attractor network has separate energy minima, each one of which corresponds to a learned
pattern, whereas the energy landscape of a continuous attractor network is flat, so that the activity packet remains stable with
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continuous firing wherever it is started in the state space (Rolls, 2016a; Rolls and Deco, 2010). (The state space refers to the set of
possible spatial states of the animal in its environment, e.g., the set of possible places in a room.)

So far we have said that the neurons in the continuous attractor network are connected to each other by synaptic weights
wij that are a simple function, for example Gaussian, of the distance between the states of the agent in the physical world
(e.g., head directions, spatial views etc.) represented by the neurons. In many simulations, the weights are set by formula
to have weights with these appropriate Gaussian values. However, Stringer et al. (2002b) showed how the appropriate
weights could be set up by learning. They started with the fact that since the neurons have broad tuning that may be
Gaussian in shape, nearby neurons in the state space will have overlapping spatial fields, and will thus be coactive to a degree
that depends on the distance between them. They postulated that therefore the synaptic weights could be set up by associa-
tive learning based on the coactivity of the neurons produced by external stimuli as the animal moved in the state space. For
example, head direction cells are forced to fire during learning by visual cues in the environment that produce Gaussian firing
as a function of head direction from an optimal head direction for each cell. The learning rule is simply that the weights wij

from head direction cell j with firing rate rHD
j to head direction cell i with firing rate rHD

i are updated according to an asso-
ciative (Hebb) rule

dwij ¼ krHD
i rHD

j (6)

where dwij is the change of synaptic weight and k is the learning rate constant. During the learning phase, the firing rate rHD
i of each

head direction cell imight be the following Gaussian function of the displacement of the head from the optimal firing direction of
the cell

rHD
i ¼ e�s2HD=2s2

HD ; (7)

where sHD is the difference between the actual head direction x (in degrees) of the agent and the optimal head direction xi for head
direction cell i, and sHD is the standard deviation. Stringer et al. (2002b) showed that after training at all head directions, the
synaptic connections develop strengths that are an almost Gaussian function of the distance between the cells in head direction
space.

Combined Continuous and Discrete Memory Representations in the Same (e.g., CA3) Network and Episodic Memory

Space is continuous, and object representations are discrete. If these representations are to be combined in, for example, an object–
place memory, then we need to understand the operation of networks that combine these representations. It has now been shown
that attractor networks can store both continuous patterns and discrete patterns (as illustrated in Fig. 7), and can thus be used to
store, for example, the location in (continuous, physical) space (e.g., the place “out there” in a room represented by spatial view
cells) where an object (a discrete item) is present (Rolls et al., 2002).
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Figure 7 The types of firing patterns stored in continuous attractor networks are illustrated for the patterns present on neurons 1–1000 for
Memory 1 (when the firing is that produced when the spatial state represented is that for location 300), and for Memory 2 (when the firing is that
produced when the spatial state represented is that for location 500). The continuous nature of the spatial representation results from the fact
that each neuron has a Gaussian firing rate that peaks at its optimal location. This particular mixed network also contains discrete representations
that consist of discrete subsets of active binary firing rate neurons in the range 1001–1500. The firing of these latter neurons can be thought of as
representing the discrete events that occur at the location. Continuous attractor networks by definition contain only continuous representations, but
this particular network can store mixed continuous and discrete representations, and is illustrated to show the difference of the firing patterns
normally stored in separate continuous attractor and discrete attractor networks. For this particular mixed network, during learning, Memory 1 is
stored in the synaptic weights, then Memory 2, etc., and each memory contains part that is continuously distributed to represent physical space, and
part that represents a discrete event or object.
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The Capacity of a Continuous Attractor Network and Multiple Charts

If spatial representations are stored in the hippocampus, the important issue arises in terms of understanding memories that include
a spatial component or context of how many such spatial representations could be stored in a continuous attractor network. The
very interesting result is that because there are in general low correlations between the representations of places in different maps or
charts (where eachmap or chart might be of one roomor locale), verymany different maps can be simultaneously stored in a contin-
uous attractor network (Battaglia and Treves, 1998a).

Idiothetic Update by Path Integration

We have considered how spatial representations could be stored in continuous attractor networks, and how the activity can bemain-
tained at any location in the state space in a form of short-term memory when the external (e.g., visual) input is removed. However,
many networks with spatial representations in the brain can be updated by internal, self-motion (i.e., idiothetic), cues even when
there is no external (e.g., visual) input. Path integration can be implemented in recurrent attractor networks as described elsewhere
for the entorhinal cortex (Giocomo et al., 2011; Zilli, 2012) and hippocampal CA3 (Kesner and Rolls, 2015; Rolls, 2016a).

The Dynamics of the Recurrent Network

The analysis described earlier about the capacity of a recurrent network such as the CA3 considered steady-state conditions of the
firing rates of the neurons. The question arises of how quickly the recurrent network would settle into its final state. With reference to
the CA3 network, how long does it take before a pattern of activity, originally evoked in CA3 by afferent inputs, becomes influenced
by the activation of recurrent collaterals? In a more general context, recurrent collaterals between the pyramidal cells are an impor-
tant feature of the connectivity of the cerebral neocortex. How long would it take these collaterals to contribute fully to the activity of
cortical cells? If these settling processes took in the order of hundreds of ms, they would be much too slow to contribute usefully to
cortical activity, whether in the hippocampus or the neocortex (Panzeri et al., 2001; Rolls, 2016a).

It has been shown that if the neurons are treated not as McCulloch–Pitts neurons which are simply “updated” at each iter-
ation, or cycle of time steps (and assume the active state if the threshold is exceeded), but instead are analyzed and modeled
as “integrate-and-fire” neurons in real continuous time, then the network can effectively “relax” into its recall state very
rapidly, in one or two time constants of the synapses (Battaglia and Treves, 1998b; Rolls, 2016a; Rolls and Treves, 1998;
Treves, 1993). This corresponds to perhaps 20 ms in the brain. One factor in this rapid dynamics of autoassociative networks
with brainlike “integrate-and-fire” membrane and synaptic properties is that with some spontaneous activity, some of the
neurons in the network are close to threshold already before the recall cue is applied, and hence some of the neurons are
very quickly pushed by the recall cue into firing, so that information starts to be exchanged very rapidly (within 1–2 ms
of brain time) through the modified synapses by the neurons in the network. The progressive exchange of information starting
early on within what would otherwise be thought of as an iteration period (of perhaps 20 ms, corresponding to a neuronal
firing rate of 50 spikes/s), is the mechanism accounting for rapid recall in an autoassociative neuronal network made biolog-
ically realistic in this way. Further analysis of the fast dynamics of these networks, if they are implemented in a biologically
plausible way with “integrate-and-fire” neurons, is provided elsewhere (Panzeri et al., 2001; Rolls, 2016a; Rolls and Treves,
1998; Treves, 1993).

Mossy Fiber Inputs to the CA3 Cells and Pattern Separation

For the CA3 to operate with high capacity as an autoassociation or attractor memory, the sets of CA3 neurons that represent each
event to be stored and later recalled need to be as uncorrelated from each other as possible. Correlations between patterns reduce
the memory capacity of an autoassociation network (Kohonen, 1977, 1984; Kohonen et al., 1981; Marr, 1971; Rolls, 2008; Rolls
and Treves, 1998; Sompolinsky, 1987), and because storage capacity is at a premium in an episodic memory system, there are
several mechanisms that reduce the correlations between the firing of the population vectors of CA3 neuron firing each one
of which represents a different event to be stored in memory. In the theoretical physics approach to the capacity of attractor
networks, it is indeed assumed that the different vectors of firing rates to be stored are well separated from each other, by drawing
each vector of firing at random, and by assuming very large (infinite) numbers of neurons in each pattern (Hopfield, 1982; Rolls
and Treves, 1998).

I have proposed that there are several mechanisms that help achieve this pattern separation, namely the mossy fiber pattern sepa-
ration effect produced by the small number of connections received by a CA3 neuron from mossy fibers which dominate the CA3
cell firing; the expansion recoding, and the sparse representation provided by the dentate granule cells that form the mossy fiber
synapses; and the sparseness of the CA3 cell representation (Kesner and Rolls, 2015; Rolls, 2016a,b). Neurogenesis of dentate
granule cells is a fifth potential contributor to achieving pattern separation of CA3 cell firing (Aimone et al., 2010; Deng et al.,
2010; Johnston et al., 2016).

We hypothesize that the mossy fiber inputs force efficient information storage by virtue of their strong and sparse influence on
the CA3 cell firing rates (Cerasti and Treves, 2010; Rolls, 1987, 1989b; Treves and Rolls, 1992). (The strong effects likely to be
mediated by the mossy fibers were also emphasized by McNaughton and Morris (1987) and McNaughton and Nadel
(1990).) We hypothesize that the mossy fiber input appears to be particularly appropriate in several ways. First of all, the fact
that mossy fiber synapses are large and located very close to the soma makes them relatively powerful in activating the postsyn-
aptic cell. [This should not be taken to imply that a CA3 cell can be fired by a single mossy fiber excitatory postsynaptic potential
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(EPSP).] Second, the firing activity of dentate granule cells appears to be very sparse (Jung and McNaughton, 1993; Leutgeb et al.,
2007) and this, together with the small number of connections on each CA3 cell, produces a sparse signal, which can then be
transformed into an even sparser firing activity in CA3 by a threshold effect.2 Third, nonassociative plasticity of mossy fibers
(see Brown et al., 1989; Brown et al., 1990) might have a useful effect in enhancing the signal-to-noise ratio, in that a consistently
firing mossy fiber would produce nonlinearly amplified currents in the postsynaptic cell, which would not happen with an occa-
sionally firing fiber (Treves and Rolls, 1992). This plasticity, and also learning in the dentate, would also have the effect that
similar fragments of each episode (e.g., the same environmental location) recurring on subsequent occasions would be more
likely to activate the same population of CA3 cells, which would have potential advantages in terms of economy of use of the
CA3 cells in different memories, and in making some link between different episodic memories with a common feature, such
as the same location in space. Fourth, with only a few, and powerful, active mossy fiber inputs to each CA3 cell, setting a given
sparseness of the representation provided by CA3 cells would be simplified, for the EPSPs produced by the mossy fibers would be
Poisson distributed with large membrane potential differences for each active mossy fiber. Setting the average firing rate of the
dentate granule cells would effectively set the sparseness of the CA3 representation, without great precision being required in the
threshold setting of the CA3 cells (Rolls et al., 1997b). Part of what is achieved by the mossy fiber input may be setting the sparse-
ness of the CA3 cells correctly, which, as shown earlier, is very important in an autoassociative memory store. Fifth, the nonas-
sociative and sparse connectivity properties of the mossy fiber connections to CA3 cells may be appropriate for an episodic
memory system which can learn very fast, in one trial. The hypothesis is that the sparse connectivity would help arbitrary rela-
tively uncorrelated sets of CA3 neurons to be activated for even somewhat similar input patterns without the need for any
learning of how best to separate the patterns, which in a self-organizing competitive network would take several repetitions
(at least) of the set of patterns. The mossy fiber solution may thus be adaptive in a system that must learn in one trial, and
for which the CA3 recurrent collateral learning requires uncorrelated sets of CA3 cells to be allocated for each (one-trial) episodic
memory. The hypothesis is that the mossy fiber sparse connectivity solution performs the appropriate function without the
mossy fiber system having to learn by repeated presentations of how best to separate a set of training patterns. The perforant
path input would, the quantitative analysis shows, not produce a pattern of firing in CA3 that contains sufficient information
for learning (Treves and Rolls, 1992).

On the basis of these points, we predict that the mossy fibers may be necessary for new learning in the hippocampus, but may
not be necessary for recall of existing memories from the hippocampus. Experimental evidence consistent with this prediction
about the role of the mossy fibers in learning has been found in rats with disruption of the dentate granule cells (Lassalle
et al., 2000).

As acetylcholine turns down the efficacy of the recurrent collateral synapses between CA3 neurons (Giocomo and Hasselmo,
2007; Hasselmo et al., 1995), then cholinergic activation also might help to allow external inputs rather than the internal recurrent
collateral inputs to dominate the firing of the CA3 neurons during learning, as the current theory proposes. If cholinergic activation
at the same time facilitated LTP in the recurrent collaterals (as it appears to in the neocortex), then cholinergic activation could have
a useful double role in facilitating new learning at times of behavioral activation (Giocomo and Hasselmo, 2007; Hasselmo et al.,
1995), when presumably it may be particularly relevant to allocate some of the limited memory capacity to new memories.

Perforant Path Inputs to CA3 Cells

By calculating the amount of information that would end up being carried by a CA3 firing pattern produced solely by the per-
forant path input and by the effect of the recurrent connections, we have been able to show (Treves and Rolls, 1992) that an input
of the perforant path type, alone, is unable to direct efficient information storage. Such an input is too weak, it turns out, to drive
the firing of the cells, as the “dynamics” of the network is dominated by the randomizing effect of the recurrent collaterals. This is
the manifestation, in the CA3 network, of a general problem affecting storage (i.e., learning) in all autoassociative memories. The
problem arises when the system is considered to be activated by a set of input axons making synaptic connections that have to
compete with the recurrent connections, rather than having the firing rates of the neurons artificially clamped into a prescribed
pattern.

An autoassociative memory network needs afferent inputs also in the other mode of operation, i.e., when it retrieves a previously
stored pattern of activity. We have shown (Treves and Rolls, 1992) that the requirements on the organization of the afferents are in
this case very different, implying the necessity of a second, separate input system, which we have identified with the perforant path
to CA3. In brief, the argument is based on the notion that the cue available to initiate retrieval might be rather small, i.e., the distri-
bution of activity on the afferent axonsmight carry a small correlation, q<< 1, with the activity distribution present during learning.
In order not to lose this small correlation altogether, but rather transform it into an input current in the CA3 cells that carries
a sizable signaldwhich can then initiate the retrieval of the full pattern by the recurrent collateralsdone needs a large number

2For example, if only 1 granule cell in 100 were active in the dentate gyrus, and each CA3 cell received a connection from 50 randomly placed granule cells,

then the number of active mossy fiber inputs received by CA3 cells would follow a Poisson distribution of average 50/100 ¼ 1/2, i.e., 60% of the cells would

not receive any active input, 30% would receive only one, 7.5% two, little more than 1% would receive three, and so on. (It is easy to show from the properties

of the Poisson distribution and our definition of sparseness, that the sparseness of the mossy fiber signal as seen by a CA3 cell would be x/(1 þ x), with

x ¼ CMFaDG, assuming equal strengths for all mossy fiber synapses.) If three mossy fiber inputs were required to fire a CA3 cell and these were the only inputs

available, we see that the activity in CA3 would be roughly as sparse, in the example, as in the dentate gyrus. CMF is the number of mossy fiber connections to

a CA3 neuron, and aDG is the sparseness of the representation in the dentate granule cells.
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of associatively modifiable synapses. This is expressed by the formulas that give the specific signal S produced by sets of associatively
modifiable synapses, or by nonassociatively modifiable synapses: if CAFF is the number of afferents per cell,

SASS �
ffiffiffiffiffiffiffiffiffiffi
CAFF

p
ffiffiffi
p

p q SNONASS � 1ffiffiffiffiffiffiffiffiffiffi
CAFF

p q: (8)

Associatively modifiable synapses are therefore needed, and are needed in a number CAFF of the same order as the number of
concurrently stored patterns p, so that small cues can be effective; whereas nonassociatively modifiable synapsesdor even more so,
nonmodifiable onesdproduce very small signals, which decrease in size the larger the number of synapses. In contrast with the
storage process, the average strength of these synapses does not play now a crucial role. This suggests that the perforant path system
is the one involved in relaying the cues that initiate retrieval.

CA1 Cells
Associative Retrieval at the CA3 to CA1 (Schaffer Collateral) Synapses

The CA3 cells connect to the CA1 cells by the Schaffer collateral synapses. The following arguments outline the advantage of this
connection being associatively modifiable, and apply independent of the relative extent to which the CA3 or the direct entorhinal
cortex inputs to CA1 drive the CA1 cells during the learning phase.

The amount of information about each episode retrievable from CA3 has to be balanced off against the number of episodes
that can be held concurrently in storage. The balance is regulated by the sparseness of the coding. Whatever the amount of infor-
mation per episode in CA3, one may hypothesize that the organization of the structures that follow CA3 (i.e., CA1, the various
subicular fields, and the return projections to neocortex) should be optimized so as to preserve and use this information content
in its entirety. This would prevent further loss of information, after the massive but necessary reduction in information content
that has taken place along the sensory pathways and before the autoassociation stage in CA3. We have proposed (Treves, 1995;
Treves and Rolls, 1994) that the need to preserve the full information content present in the output of an autoassociative
memory, requires an intermediate recoding stage (CA1) with special characteristics. In fact, a calculation of the information
present in the CA1 firing pattern, elicited by a pattern of activity retrieved from CA3, shows that a considerable fraction of the
information is lost if the synapses are nonmodifiable, and that this loss can be prevented only if the CA3 to CA1 synapses are
associatively modifiable. Their modifiability should match the plasticity of the CA3 recurrent collaterals. The additional infor-
mation that can be retrieved beyond that retrieved by CA3 because the CA3 to CA1 synapses are associatively modifiable is
strongly demonstrated by the hippocampal simulation described by Rolls (1995), and is quantitatively analyzed by Schultz
and Rolls (1999).

Recoding in CA1 to Facilitate Retrieval to the Neocortex

If the total amount of information carried by CA3 cells is redistributed over a larger number of CA1 cells, less information
needs to be loaded onto each CA1 cell, rendering the code more robust to information loss in the next stages. For example, if
each CA3 cell had to code for 2 bits of information, e.g., by firing at one of four equiprobable activity levels, then each CA1
cell (if there were twice as many as there are CA3 cells) could code for just 1 bit, e.g., by firing at one of only two equiprob-
able levels. Thus the same information content could be maintained in the overall representation while reducing the sensi-
tivity to noise in the firing level of each cell. In fact, there are more CA1 cells than CA3 cells in rats (2.5 � 105). There are
even more CA1 cells (4.6 � 106) in humans (and the ratio of CA1 to CA3 cells is greater). The CA1 cells may thus provide
the first part of the expansion for the return projections to the enormous numbers of neocortical cells in primates, after the
bottleneck of the single network in CA3, the number of neurons in which may be limited because it has to operate as a single
network.

Another argument on the operation of the CA1 cells is also considered to be related to the CA3 autoassociation effect. In this,
several arbitrary patterns of firing occur together on the CA3 neurons, and become associated together to form an episodic or “whole
scene” memory. It is essential for this CA3 operation that several different sparse representations are present conjunctively to form
the association. Moreover, when completion operates in the CA3 autoassociation system, all the neurons firing in the original
conjunction can be brought into activity by only a part of the original set of conjunctive events. For these reasons, a memory in
the CA3 cells consists of several different simultaneously active ensembles of activity. To be explicit, the parts A, B, C, D, and E
of a particular episode would each be represented, roughly speaking, by its own population of CA3 cells, and these five populations
would be linked together by autoassociation. It is suggested that the CA1 cells, which receive these groups of simultaneously active
ensembles, can detect the conjunctions of firing of the different ensembles that represent the episodic memory, and allocate by
competitive learning neurons to represent at least larger parts of each episodic memory (Kesner and Rolls, 2015; Rolls, 1987,
1989b, 2016a). In relation to the simple example mentioned earlier, some CA1 neurons might code for ABC, and others for
BDE, rather than having to maintain independent representations in CA1 of A, B, C, D, and E. This implies a more efficient repre-
sentation, in the sense that when eventually after many further stages, neocortical neuronal activity is recalled (as discussed later),
each neocortical cell need not be accessed by all the axons carrying each component A,B,C,D, and E, but instead by fewer axons
carrying larger fragments, such as ABC, and BDE. This process is performed by competitive networks, which self-organize to find
categories in the input space, where each category is represented by a set of simultaneously active inputs (Rolls, 2000, 2016a,b; Rolls
and Treves, 1998).
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CA1 Inputs From CA3 Versus Direct Entorhinal Inputs

Another feature of the CA1 network is its double set of afferents, with each of its cells receiving most synapses from the Schaffer
collaterals coming from CA3, but also a proportion (about one-sixth, Amaral et al., 1990) from direct perforant path projections
from entorhinal cortex. Such projections appear to originate mainly in layer 3 of entorhinal cortex (Witter et al., 1989), from a pop-
ulation of cells only partially overlapping with that (mainly in layer 2) giving rise to the perforant path projections to dentate gyrus
and CA3. This suggests that it is useful to include in CA1 not only what it is possible to recall from CA3, but also the detailed infor-
mation present in the retrieval cue itself (see Treves and Rolls, 1994).

Another possibility is that the perforant path input provides the strong forcing input to the CA1 neurons during learning, and
that the output of the CA3 system is associated with this forced CA1 firing during learning (McClelland et al., 1995). During recall,
an incomplete cue could then be completed in CA3, and the CA3 output would then produce firing in CA1 that would correspond
to that present during the learning. This suggestion is essentially identical to that of Treves and Rolls (1994) about the backprojec-
tion system and recall, except that McClelland et al. (1995) suggest that the output of CA3 is associated at the CA3 to CA1 (Schaffer
collateral) synapses with the signal present during training in CA1, whereas in the theory of Treves and Rolls (1994), the output of
the hippocampus consists of CA1 firing which is associated in the entorhinal cortex and earlier cortical stages with the firing present
during learning, providing a theory of how the correct recall is implemented at every backprojection stage though the neocortex (see
later).

CA1 and Sequence Memory for Objects and Odors: Time Cells

Selective lesions of the CA1 implicate this region in the memory for sequences of objects and odors (Kesner and Rolls, 2015). In
humans, the hippocampus becomes activated when the temporal order of events is being processed (Lehn et al., 2009). How
might this be implemented? As we have just seen, the entorhinal cortex does send direct inputs to CA1 that bypass CA3 (see
Fig. 1), and with respect to the medial entorhinal cortex grid cells, there are a number of theories of their computational bases
(Giocomo et al., 2011). One attractive theory is that different temporal delays in the neural circuitry of the medial entorhinal
cortex related to a temporal adaptation process might result in the different sizes of spatial grids that are found in the medial
entorhinal cortex (Kropff and Treves, 2008). This is essentially a timing hypothesis; and it is an interesting new idea that the
timing mechanism that may be inherent in the medial entorhinal cortex might also be a source of the temporal delay/timing
information needed to form sequence memories in CA1, using the direct projection from medial entorhinal cortex to CA1 to
introduce timing information in the form of neurons that fire at different temporal times in a sequence, which is what is needed
for the formation of odor, object, and spatial sequence memories in CA1 (see section Dentate Granule Cells). Consistent with
this hypothesis, timing cells are found in the medial entorhinal cortex (Kraus et al., 2013a,b). Object (including odor) informa-
tion could reach CA1 from the lateral entorhinal cortex. The time and object information might be combined in CA1 by the
associative process inherent in a competitive network (Rolls, 2008) to form time and object combination neurons (with time
originating from medial and object from lateral entorhinal cortex). Replay of the time information on another trial could allow
the same object and time combination neurons to be retrieved by generalization, and thus effectively for the position of the
object in the sequence to be retrieved.

This hypothesis is consistent with neurophysiological evidence of Macdonald et al. (2011) showing that neurons in the rat
hippocampus have firing rates that reflect which temporal part of the task is current. In particular, a sequence of different neurons
is activated at successive times during a time delay period. The tasks used included an object–odor-paired associate nonspatial task
with a 10 s delay period between the visual stimulus and the odor. The new evidence also shows that a large proportion of hippo-
campal neurons fire in relation to individual events in a sequence being remembered (e.g., a visual object or odor), and some to
combinations of the event and the time in the delay period (Macdonald et al., 2011).

These interesting neurophysiological findings indicate that rate encoding is being used to encode time, that is, the firing rates of
different neurons are high at different times within a trial, delay period, etc (Kraus et al., 2013a,b; Macdonald et al., 2011; Rolls and
Deco, 2010).

Backprojections to the NeocortexdA Hypothesis
The need for information to be retrieved from the hippocampus to affect other brain areas was noted in the Introduction. The way in
which this could be implemented via backprojections to the neocortex is now considered.

It is suggested that the modifiable connections from the CA3 neurons to the CA1 neurons allow the whole episode in CA3 to be
produced in CA1. This may be assisted as described earlier by the direct perforant path input to CA1. This might allow details of the
input key for the recall process, as well as the possibly less information-rich memory of the whole episode recalled from the CA3
network, to contribute to the firing of CA1 neurons. The CA1 neurons would then activate, via their termination in the deep layers of
the entorhinal cortex, at least the pyramidal cells in the deep layers of the entorhinal cortex (see Fig. 1). These entorhinal cortex layer
5 neurons would then, by virtue of their backprojections (Lavenex and Amaral, 2000; Witter et al., 2000a) to the parts of cerebral
cortex that originally provided the inputs to the hippocampus, terminate in the superficial layers (including layer 1) of those neocor-
tical areas, where synapses would be made onto the distal parts of the dendrites of the (superficial and deep) cortical pyramidal cells
(Rolls, 1989b). The areas of cerebral neocortex in which this recall would be produced could include multimodal cortical areas (e.g.,
the cortex in the superior temporal sulcus which receives inputs from temporal, parietal, and occipital cortical areas, and fromwhich
it is thought that cortical areas such as 39 and 40 related to language developed), and also areas of unimodal association cortex (e.g.,
inferior temporal visual cortex). The backprojections, by recalling previous episodic events, could provide information useful to the
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neocortex in the building of new representations in the multimodal and unimodal association cortical areas, which by building new
long-term representations can be considered as a form of memory consolidation (Rolls, 1989a,b; Rolls, 1990a,b, 2016a), or in orga-
nizing actions.

The hypothesis of the architecture with which this would be achieved is shown in Fig. 1. The feedforward connections from asso-
ciation areas of the cerebral neocortex (solid lines in Fig. 1), show major convergence as information is passed to CA3, with the CA3
autoassociation network having the smallest number of neurons at any stage of the processing. The backprojections allow for diver-
gence back to neocortical areas. The way in which I suggest that the backprojection synapses are set up to have the appropriate
strengths for recall is as follows (Kesner and Rolls, 2015; Rolls, 1989b, 2016a). During the setting up of a new episodic memory,
there would be strong feedforward activity progressing toward the hippocampus. During the episode, the CA3 synapses would be
modified, and via the CA1 neurons and the subiculum, a pattern of activity would be produced on the backprojecting synapses to
the entorhinal cortex. Here the backprojecting synapses from active backprojection axons onto pyramidal cells being activated by
the forward inputs to entorhinal cortex would be associatively modified. A similar process would be implemented at preceding
stages of neocortex, that is in the parahippocampal gyrus/perirhinal cortex stage, and in association cortical areas, as shown in Fig. 1.

The concept is that during the learning of an episodic memory, cortical pyramidal cells in at least one of the stages would be
driven by forward inputs, but would simultaneously be receiving backprojected activity (indirectly) from the hippocampus which
would by pattern association from the backprojecting synapses to the cortical pyramidal cells become associated with whichever
cortical cells were being made to fire by the forward inputs. Then later on, during recall, a recall cue from perhaps another part
of cortex might reach CA3, where the firing during the original episode would be completed. The resulting backprojecting activity
would then, as a result of the pattern association learned previously, bring back the firing in any cortical area that was present during
the original episode. Thus retrieval involves reinstating the activity that was present in different cortical areas that was present during
the learning of an episode. (The pattern association is also called heteroassociation, to contrast it with autoassociation. The pattern
association operates at multiple stages in the backprojection pathway, as made evident in Fig. 1.) If the recall cue was an object, this
might result in recall of the neocortical firing that represented the place in which that object had been seen previously. As noted
elsewhere in this chapter and by McClelland et al. (1995) that recall might be useful to the neocortex to help it build new semantic
memories, which might inherently be a slow process and is not part of the theory of recall.

Backprojections to the NeocortexdQuantitative Analysis
A plausible requirement for a successful hippocampo-directed recall operation, is that the signal generated from the hippocampally
retrieved pattern of activity, and carried backward toward neocortex, remain undegraded when compared to the noise due, at each
stage, to the interference effects caused by the concurrent storage of other patterns of activity on the same backprojecting synaptic
systems. That requirement is equivalent to that used in deriving the storage capacity of such a series of heteroassociative memories,
and it was shown in Treves and Rolls (1991) that the maximum number of independently generated activity patterns that can be
retrieved is given, essentially, by the same formula as (3) above where, however, a is now the sparseness of the representation at any
given stage, and C is the average number of (back-)projections each cell of that stage receives from cells of the previous one. (kʹ is
a similar, slowly varying factor to that introduced earlier.) If p is equal to the number of memories held in the hippocampal
memory, it is limited by the retrieval capacity of the CA3 network, pmax. Putting together the formula for the latter with that shown
here, one concludes that, roughly, the requirement implies that the number of afferents of (indirect) hippocampal origin to a given
neocortical stage (CHBP), must be CHBP ¼ CRCanc/aCA3, where C

RC is the number of recurrent collaterals to any given cell in CA3, the
average sparseness of a representation is anc, and aCA3 is the sparseness of memory representations there in CA3.

The aforementioned requirement is very strong: even if representations were to remain as sparse as they are in CA3, which is
unlikely, to avoid degrading the signal, CHBP should be as large as CRC, i.e., 12,000 in the rat. If then CHBP has to be of the same
order as CRC, one is led to a very definite conclusion: a mechanism of the type envisaged here could not possibly rely on a set
of monosynaptic CA3-to-neocortex backprojections. This would imply that, to make a sufficient number of synapses on each of
the vast number of neocortical cells, each cell in CA3 has to generate a disproportionate number of synapses (i.e., CHBP times
the ratio between the number of neocortical and that of CA3 cells). The required divergence can be kept within reasonable
limits only by assuming that the backprojecting system is polysynaptic, provided that the number of cells involved grows
gradually at each stage, from CA3 back to neocortical association areas (Treves and Rolls, 1994) (cf. Fig. 1).

The theory of recall by the backprojections thus provides a quantitative account of why the cerebral cortex has as many back-
projection as forward projection connections. Further aspects of the operation of the backprojecting systems are described elsewhere
(Rolls, 2008, 2016a), including the advantage of diluted connectivity in this pattern association system (Rolls, 2015a, 2016a).

Comparison With Other Theories of Hippocampal Function

The overall theory described here is close in different respects to those of a number of other investigators (Brown and Zador, 1990;
Eichenbaum et al., 1992; Marr, 1971; McClelland et al., 1995; McNaughton and Nadel, 1990; Moscovitch et al., 2005; Preston and
Eichenbaum, 2013; Squire, 1992; Wang and Morris, 2010; Winocur and Moscovitch, 2011) and of course priority is not claimed on
all the propositions put forward here.

Some theories postulate that the hippocampus performs spatial computation. The theory of O’Keefe and Nadel (1978) that the
hippocampus implements a cognitive map placed great emphasis on spatial function. It supposed that the hippocampus at least
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holds information about allocentric space in a form that enables rats to find their way in an environment even when novel trajec-
tories are necessary, that is it permits an animal to “go from one place to another independent of particular inputs (cues) or outputs
(responses), and to link together conceptually parts of the environment which have never been experienced at the same
time.” O’Keefe (1990) extended this analysis and produced a computational theory of the hippocampus as a cognitive map, in
which the hippocampus performs geometrical spatial computations. Key aspects of the theory are that the hippocampus stores
the centroid and slope of the distribution of landmarks in an environment, and stores the relationships between the centroid
and the individual landmarks. The hippocampus then receives information as inputs about where the rat currently is, and where
the rat’s target location is, and computes geometrically the body turns and movements necessary to reach the target location. In
this sense, the hippocampus is taken to be a spatial computer, which produces an output which is very different from its inputs.
This is in contrast to the present theory, in which the hippocampus is a memory device, which is able to recall what was stored
in it, using as input a partial cue. A prototypical example in Rolls’ theory is the learning of object–place association memory
and the recall of the whole memory from a part, which can be used as a model of event or episodic memory. The theory of O’Keefe
postulates that the hippocampus actually performs a spatial computation. A later theory (Barry and Burgess, 2014; Burgess, 2008;
Burgess et al., 1994, 2000) also makes the same postulate, but now, for example, the firing of place cells is determined by the
distance and approximate bearing to landmarks, and the navigation is performed by increasing the strength of connections from
place cells to “goal cells,” and then performing gradient-ascent style search for the goal using the network.

McNaughton et al. (1991) have also proposed that the hippocampus is involved in spatial computation. They propose
a “compass” solution to the problem of spatial navigation along novel trajectories in known environments, postulating that
distances and bearings (i.e., vector quantities) from landmarks are stored, and that computation of a new trajectory involves vector
subtraction by the hippocampus. They postulate that a linear associative mapping is performed, using as inputs a “cross-feature”
(combination) representation of (head) angular velocity and (its time integral) head direction, to produce as output the future value
of the integral (head direction) after some specified time interval. The system can be reset by learned associations between local
views of the environment and head direction, so that when later a local view is seen, it can lead to an output from the network which
is a (corrected) head direction. They suggest that some of the key signals in the computational system can be identified with the
firing of hippocampal cells (e.g., local view cells) and subicular cells (head direction cells). It should be noted that this theory
requires a (linear) associative mapping with an output (head direction) different in form from the inputs (head angular velocity
over a time period, or local view). This is pattern association (with the conditioned stimulus local view, and the unconditioned
stimulus head direction), not autoassociation, and it has been postulated that this pattern association can be performed by the
hippocampus (cf. McNaughton and Morris, 1987). This theory is again in contrast to the present theory, in which the hippocampus
operates as a memory to store events that occur at the same time, and can recall the whole memory from any part of what was stored.
A pattern associator uses a conditioned stimulus to map an input to a pattern of firing in an output set of neurons which is like that
produced in the output neurons by the unconditioned stimulus. A description of pattern associations and autoassociators in
a neurobiological context is provided by Rolls (2016a). The present theory is fully consistent with the presence of “spatial view”
cells and whole body motion cells in the primate hippocampus (Rolls, 1999; Rolls and O’Mara, 1993; Rolls and Xiang, 2006)
(or place or local view cells in the rat hippocampus, and head direction cells in the presubiculum), for it is often important to store
and later recall where one has been (views of the environment, body turns made, etc.), and indeed such (episodic) memories are
required for navigation by “dead reckoning” in small environments.

The present theory thus holds that the hippocampus is used for the formation of episodic memories using autoassociation. This
function is often necessary for successful spatial computation, but is not itself spatial computation. Instead, I believe that spatial
computation is more likely to be performed in the neocortex (utilizing information if necessary recalled from the hippocampus).
Consistent with this view, hippocampal damage impairs the ability to learn new environments but not to perform spatial compu-
tations such as finding one’s way to a place in a familiar environment, whereas damage to the parietal cortex and parahippocampal
cortex can lead to problems such as topographical and other spatial agnosias, in humans (see Kolb and Whishaw, 2009). This is
consistent with spatial computations normally being performed in the neocortex. [In monkeys, there is evidence for a role of
the parietal cortex in allocentric spatial computation. For example, monkeys with parietal cortex lesions are impaired at performing
a landmark task, in which the object to be chosen is signified by the proximity to it of a “landmark” (another object) (Ungerleider
and Mishkin, 1982).]

A theory closely related to the present theory of how the hippocampus operates has been developed by McClelland et al. (1995).
It is very similar to the theory we have developed (Kesner and Rolls, 2015; Newman et al., 2012; Rolls, 1987, 1989a,b,d, 2008,
2016a; Treves and Rolls, 1992, 1994) at the systems level, except that it takes a stronger position on the gradient of retrograde
amnesia, emphasizes that recall from the hippocampus of episodic information is used to help build semantic representations
in the neocortex, and holds that the last set of synapses that are modified rapidly during the learning of each episode are those
between the CA3 and the CA1 pyramidal cells, as described earlier (see Fig. 1). It also emphasizes the important point that the
hippocampal and neocortical memory systems may be quite different, with the hippocampus specialized for the rapid learning
of single events or episodes, and the neocortex for the slower learning of semantic representations which may necessarily benefit
from the many exemplars needed to shape the semantic representation.

Lisman et al. (2005) have considered how the memory of sequences could be implemented in the hippocampus. This theory of
sequential recall within the hippocampus is inextricably linked to the internal timing within the hippocampus imposed he believes
by the theta and gamma oscillations, and this makes it difficult to recall each item in the sequence as it is needed. It is not specified
how one would read out the sequence information, given that the items are only 12 ms apart. The Jensen and Lisman (1996) model
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requires short-time constant NMDA channels, and is therefore unlikely to be implemented in the hippocampus. Hasselmo and
Eichenbaum (2005) have taken up some of these sequence ideas and incorporated them into their model, which has its origins
in the Rolls and Treves model (Rolls, 1989b; Treves and Rolls, 1992, 1994), but proposes, for example, that sequences are stored
in entorhinal cortex layer 3. The proposal that acetylcholine could be important during encoding by facilitating CA3–CA3 LTP, and
should be lower during retrieval (Hasselmo et al., 1995; Newman et al., 2012), is an important concept.

Another type of sequence memory uses synaptic adaptation to effectively encode the order of the items in a sequence (Deco and
Rolls, 2005). This could be implemented in recurrent networks such as the CA3 or the prefrontal cortex.

In this chapter, we have thus seen that quantitative approaches to the functions of the hippocampus in memory are being devel-
oped by a number of investigators, and that these theories are consistent with the quantitative circuitry of the hippocampus as well
as with neuronal recordings and the effects of lesions. Moreover, tests of the theory described here are in general consistent with the
predictions of the theory, as described elsewhere (Kesner and Rolls, 2015).
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