Associations of Social Isolation and Loneliness With Later Dementia

Author(s):
Chun Shen, PhD; Edmund Rolls, PhD; Wei Cheng, PhD; Jujiao Kang, MSc; Guiying Dong, MSc; Chao Xie, MSc; Xing-Ming Zhao, PhD; Barbara Sahakian, PhD; Jianfeng Feng, PhD

Corresponding Author:
Jianfeng Feng, jffeng@fudan.edu.cn

Neurology® Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited
Affiliation Information for All Authors: 1. Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; 2. Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China; 3. Department of Computer Science, University of Warwick, Coventry, UK; 4. Oxford Centre for Computational Neuroscience, Oxford, UK; 5. Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China; 6. MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; 7. Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK; 8. Department of Psychiatry, University of Cambridge, Cambridge, UK; 9. Zhangjiang Fudan International Innovation Center, Shanghai, China

Equal Author Contribution:

Contributions:

Chun Shen: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Analysis or interpretation of data

Edmund Rolls: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data

Wei Cheng: Major role in the acquisition of data; Analysis or interpretation of data

Jujiao Kang: Major role in the acquisition of data; Analysis or interpretation of data

Guiying Dong: Analysis or interpretation of data

Chao Xie: Analysis or interpretation of data

Xing-Ming Zhao: Analysis or interpretation of data

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited
Barbara Sahakian: Drafting/revision of the manuscript for content, including medical writing for content; Study concept or design; Analysis or interpretation of data

Jianfeng Feng: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data

Figure Count:
5

Table Count:
1

Search Terms:
[25] All Cognitive Disorders/Dementia, [54] Cohort studies, [357] Structural and social determinants of health,
[304] Gene expression studies, [120] MRI

Acknowledgment:

Study Funding:

CS is supported by grants from the National Natural Sciences Foundation of China (No. 82101617). WC is
supported by grants from the National Natural Sciences Foundation of China (No. 82071997), the Shanghai Rising-Star Program (No. 21QA1408700) and Natural Science Foundation of Shanghai (No. 18ZR1404400). ZXM is supported by National Key R&D Program of China (No. 2020YFA0712403), National Natural Sciences Foundation of China (No. 61932008 and No. 61772368). BJS receives funding from a Wellcome Trust Collaborative Award (200181/Z/15/Z), and her research is conducted within the NIHR Cambridge Biomedical Research Centre (BRC) (Mental Health Theme and Neurodegeneration Theme) and the NIHR MedTech and in vitro diagnostic Co-operative (MIC). JFF is supported by National Key R&D Program of China (No. 2019YFA0709502 and No. 2018YFC1312904), Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX01), ZJ Lab, Shanghai Center for Brain Science and Brain-Inspired Technology, and the 111 Project (No. B18015).

Disclosures:

Dr Sahakian consults for Cambridge Cognition. No other disclosures were reported.

Preprint DOI:

medRxiv, DOI: 2021.06.30.21259818

Received Date:

2021-10-21

Accepted Date:

2022-03-08

Handling Editor Statement:

Submitted and externally peer reviewed. The handling editor was Linda Hershey, MD, PhD, FAAN.
Abstract

Objective

To investigate the independent associations of social isolation and loneliness with incident dementia and to explore the potential neurobiological mechanisms.

Methods

We utilized the UK Biobank cohort to establish Cox proportional hazard models with social isolation and loneliness as separate exposures. Demographic (sex, age and ethnicity), socioeconomic (education level, household income and Townsend deprivation index), biological (BMI, APOE genotype, diabetes, cancer, cardiovascular disease and other disabilities), cognitive (speed of processing and visual memory), behavioral (current smoker, alcohol intake and physical activity), and psychological (social isolation or loneliness, depressive symptoms and neuroticism) factors measured at baseline were adjusted. Then, voxel-wise brain-wide association analyses were used to identify gray matter volumes (GMV) associated with social isolation and with loneliness. Partial least squares regression was performed to test the spatial correlation of GMV differences and gene expression using the Allen Human Brain Atlas.

Results
We included 462,619 participants (mean age at baseline 57.0 years [SD 8.1]). With a mean follow-up of 11.7 years (SD 1.7), 4,998 developed all-cause dementia. Social isolation was associated with a 1.26-fold increased risk of dementia (95% CI, 1.15-1.37) independently of various risk factors including loneliness and depression (i.e., full adjustment). However, the fully adjusted hazard ratio for dementia related to loneliness was 1.04 (95% CI, 0.94-1.16); and 75% of this relationship was attributable to depressive symptoms. Structural MRI data were obtained from 32,263 participants (mean age 63.5 years [SD 7.5]). Socially isolated individuals had lower GMVs in temporal, frontal and other (e.g., hippocampal) regions. Mediation analysis showed that the identified GMVs partly mediated the association between social isolation at baseline and cognitive function at follow-up. Social isolation-related lower GMVs were related to under-expression of genes that are down-regulated in Alzheimer’s disease and to genes that are involved in mitochondrial dysfunction and oxidative phosphorylation.

Conclusion

Social isolation is a risk factor for dementia that is independent of loneliness and many other covariates. Social isolation-related brain structural differences coupled with different molecular functions also support the associations of social isolation with cognition and dementia. Social isolation may thus be an early indicator of an increased risk of dementia.

Glossary
AD = Alzheimer’s disease; APOE = apolipoprotein E; BMI = body mass index; CI = confidence interval; FDR = false discovery rate; GMV = gray matter volume; GO = Gene Ontology; HR = hazard ratio; KEGG = Kyoto Encyclopedia of Genes and Genomes; MNI = Montreal Neurological Institute; PERM = percentage of excess risk mediated; PLS = partial least squares; TIV = total intracranial volume.
Introduction

Social isolation (an objective measure of social relationships) and loneliness (subjectively perceived social isolation) are serious yet underappreciated public health problems that are particularly associated with old age.\(^1\) Dementia is a major cause of disability in the elderly, affecting over 46 million people worldwide in 2015, and is estimated to increase to 131.5 million by 2050.\(^2\) To date, the influence of social isolation and loneliness on dementia remains unclear. Whereas in some studies social isolation but not loneliness was associated with an increased risk of dementia and cognitive decline,\(^3,4\) other studies found the opposite result.\(^5\) One possibility for this discrepancy is that the associations may be impacted by risk factors that were not consistently considered in previous studies.

Moreover, little is known about the underlying neurobiological mechanisms. The social brain hypothesis posits that the evolution of the human brain is driven by increasingly complex social selection pressures.\(^6\) Only a paucity of studies has explored the neural underpinnings of social isolation and loneliness. Structural and functional changes in several brain regions including prefrontal, temporal and parietal cortices, amygdala, hippocampus, striatum and ventral tegmental area have been reported.\(^7\)\(^-\)\(^10\) Spreng et al. (2020) reported that loneliness is associated with the default mode network.\(^11\) However, the findings are mixed, probably due to the heterogeneity of methods and study design.\(^12\)
Gene expression may also be a factor. Social factors may play a significant role in regulating the transcriptional activity of the human genome.13 Previous gene expression studies in the post-mortem nucleus accumbens and dorsolateral prefrontal cortex revealed that loneliness-related differentially expressed genes were associated with Alzheimer’s disease (AD) and immune dysfunction.14,15 One recent approach leveraged brain-wide gene expression atlases to link molecular function to macroscale brain organization,16 which was helpful to understand disease-related brain alterations, and has been useful for neurodegenerative diseases.17

With this background, we aimed to examine the separate associations of social isolation and loneliness with incident dementia after controlling for various confounders such as biological and psychological factors, using an extremely large cohort of middle-aged and old adults. Further, we investigated the neuroanatomical correlates of social isolation and of loneliness, and tested whether the identified brain differences could explain the associations of social isolation and loneliness at baseline with cognitive function at follow-up. We also analyzed gene expression to provide evidence about which biological processes or functional pathways were linked to social isolation- and loneliness-related brain differences. The associations between brain differences related to social isolation or to loneliness and AD-related genes were specifically examined.

\textbf{Methods}
Study design and participants

The workflow of this study is summarized in Figure 1. The UK Biobank is a prospective epidemiological study that involves over 500,000 individuals recruited in 22 centers across the UK between 2006 and 2010. The study has collected extensive questionnaire data, physical measurements, and biological samples. A subset of the cohort has been invited back to collect multimodal imaging data and repeat behavioral assessments since 2014. All participants are followed up for health conditions through linkage to national electronic health-related datasets. The health follow-up data used in the present study started at enrollment and ended in January 31, 2021. In this study, we restricted behavioral analyses to participants who had complete data on baseline social isolation, loneliness and cognitive function, and incident dementia (n = 462,619). Neuroimaging analyses were performed in 32,263 participants with quality-controlled MRI data and complete behavioral measures. The average time interval between baseline and the imaging visit was 8.8 (SD 1.7) years.

Standard protocol approvals, registrations, and patient consents

All participants from the UK Biobank provided informed consent and the ethical approval was from the North West Multi-Centre Research Ethics Committee. The current study was conducted under the UK Biobank application number 19542.

Defining social isolation and loneliness

Social isolation was assessed with three dichotomous questions of living alone, social
contact (1=less than monthly) and participation in social activities (1= less than weekly), as in a previous national survey.19 Loneliness was constructed from two questions which were similar to the questions in the revised ULCA loneliness scale 20: often feeling lonely (1=yes) and frequency of confiding in close people (1=less than once every few months). In the main analyses, social isolation and loneliness were classified into two categories respectively. An individual was defined as socially isolated if he or she scored 2 or 3, and was defined as lonely if he or she scored 2.21 In addition, to test the potential dose-dependent associations of social factors with dementia risk and brain structure, sensitivity analyses were performed using 3-category variables (least isolated=0, moderately isolated=1, most isolated=2 or 3; least lonely=0, moderately lonely=1, most lonely=2).

Ascertainment of dementia

All-cause dementia was identified as International Classification of Diseases 10th codes F00, F01, F02, F03 or G30 of the “first occurrence” data-fields generated by the UK Biobank (https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=1712), which were ascertained by the combination of primary care, hospital in-patient, death register and self-reported data. The date of diagnosis was set as the earliest date of dementia codes recorded regardless of source used. Prevalent dementia cases were defined as the date of diagnosis occurring within the first 3 years of follow-up or self-reported “dementia, AD or cognitive impairment” at baseline, and these cases were excluded to avoid possible reverse-causation bias (n = 494).
incident all-cause dementia cases are listed in eTable 1.

Assessment of cognitive function

Pairs matching and reaction time tests were administered to approximately 500,000 participants at baseline and to over 40,000 participants at the imaging visit. In the first test, respondents were asked to correctly identify matches from six pairs of cards after they had memorized their positions. The number of incorrect matches was recorded, with a greater number reflecting poorer visual memory. The card-game “Snap” asked participants to press a button when two simultaneously presented cards matched, with shorter reaction time representing faster speed of processing. These two tests have been used in aging-related studies22 and shown predictive value for dementia.23 The raw scores were logarithmically transformed due to skewed distribution. As all cognitive tests in the UK Biobank loaded on a single factor24 and in order to reduce measurement error, we standardized the separate scores and averaged them to yield a composite cognitive score to use in analyses, as in previous studies.25

Structural MRI data

Neuroimaging data were collected across three dedicated, identical imaging centers. The detailed MRI acquisition protocol has been described elsewhere.26 All structural MRI data were preprocessed with the Statistical Parametric Mapping software version 12 (http://www.fil.ion.ucl.ac.uk/spm) using the CAT12 toolbox (http://dbm.neuro.uni-jena.de/cat) with default settings, including the use of
high-dimensional spatial normalization with an already integrated Dartel template in Montreal Neurological Institute (MNI) space. All images were subjected to nonlinear modulations and corrected for each individual head size. Images were then smoothed with an 8 mm full-width at half-maximum Gaussian kernel with a resulting voxel size of 1.5 mm3. We focused our analyses on cortical and subcortical regions excluding the cerebellum.

Transcriptomic data

We used transcriptomic data from six neurotypical adult brains in the Allen Human Brain Atlas. Tissue samples in the left hemisphere were used as right hemisphere data were only available for two donors. Standard preprocessing steps included probe-to-gene re-annotation, intensity-based data filtering, probe selection by mean, separating tissue samples into subcortical and cortical regions, and within-donor normalization, as reported previously.27 Finally, we obtained expression values for 15,408 unique genes at 711 cortical and 135 subcortical locations separately.

Covariates

Covariates were chosen based on the literature and availability at baseline. Socioeconomic factors included educational attainment (no secondary education, secondary education and university degree), annual household income ($<\£31000$, $\geq\£31000$) and Townsend deprivation index representing area-level deprivation (≥2.00, -2.00-1.99, <-2.00). Health behaviors were obtained by self-rated questions:
current smoker, alcohol intake (<3, ≥3 times/week) and moderate/vigorous physical activity (<1, 1-3, ≥4 days/week). Biological factors comprised BMI (<25, 25-30, ≥30), APOE genotype (ɛ4 non-carrier, carrier, homozygous; eMethod 1), diabetes, cancer, cardiovascular disease (e.g., heart attack, angina, stroke, high blood pressure) and any other serious medical conditions or disabilities diagnosed by a doctor. Depressive symptoms over the past two weeks were measured by 4 items from the Patient Health Questionnaire²⁸: depressed mood, uninterest/absence of enthusiasm, tenseness/restlessness, and tiredness/lethargy. Neuroticism was assessed by 11 out of 12 available items (excluding loneliness) from the brief Eysenck Personality Inventory Neuroticism scale.²⁹

Data availability

Data from the UK Biobank are available to eligible researchers on the website (www.ukbiobank.ac.uk). Data from the Allen Human Brain Atlas are publicly available (https://human.brain-map.org/static/download).

Statistical analysis

Cox proportional hazard model

Associations of social isolation and loneliness with dementia incidence were investigated using Cox proportional hazard models with age as a timescale. The results are presented as hazard ratios (HRs) and 95% confidence intervals (CI). The proportional hazard assumptions were checked using Schoenfeld residuals, and no
major violations were observed. All the models were adjusted for age, sex and ethnicity. To assess the extent to which baseline covariates explained the associations of social isolation and loneliness with incident dementia, the percentage of excess risk mediated (PERM)\(^{30}\) was estimated by \(\frac{\text{HR}_{\text{age, sex and ethnicity adjusted}} - \text{HR}_{\text{age, sex, ethnicity and risk factor adjusted}}}{\text{HR}_{\text{age, sex and ethnicity adjusted}} - 1} \times 100\) for the following six groups of explanatory variables: (1) socioeconomic (education level, household income and Townsend deprivation index); (2) health behavioral (current smoker, alcohol intake and physical activity); (3) biological (BMI, \(APOE\) genotype, diabetes, cancer, cardiovascular disease and any other disabilities); (4) psychological factors (depressive symptoms and neuroticism); (5) cognitive function; (6) loneliness (for social isolation as the exposure) or social isolation (for loneliness as the exposure).

Finally, a full adjustment model including all covariates was conducted. Covariates were treated as categorical variables with missing values as a separate category. Collinearity diagnostic tests were performed to check that collinearity was not present, and that variable inflation factors were < 2.5. We performed subgroup analyses to assess potential modification effects by sex (men or women) and age (<60 or ≥60 years), and a sensitivity analysis using complete cases to test the robustness. In order to further examine the impact of depression, we also conducted a subgroup analysis separately for participants with and without a diagnosis of depression at baseline. Antidepressants medication was additionally adjusted in the depressive group (eMethod 2).
Whole-brain and voxel-wise analysis

Linear regression models were used to investigate the cross-sectional associations of social isolation and loneliness with gray matter volume (GMV). Age, education and income at the imaging visit, sex, ethnicity, site, and total intracranial volume (TIV) were used as covariates of no interest. Multiple comparison correction was performed at the voxel level with a $P_{\text{FDR}} < 0.05$. A significant cluster was defined on the basis of an 18-connectivity criterion and having more than 217 voxels falling into the 90% CI of the smoothing kernel voxels. Three sensitivity analyses were performed: (1) excluding participants with dementia at any time (n = 29), (2) additionally controlling for loneliness or social isolation, (3) additionally controlling for depressive symptoms. The significant GMVs were decoded for cognitive functions using the Neurosynth meta-analysis toolbox, and visualized on a word-cloud plot (eMethod 3). We also examined the cross-sectional associations between the significant GMVs and cognitive function in the UK Biobank by partial correlation analysis controlling for the same covariates as in the whole-brain analysis. Finally, the mediation effect of the significant GMVs on the association between social isolation/loneliness at baseline and cognitive function at the imaging visit was examined. Age, education and income at baseline, time interval between baseline and the imaging visit, sex, ethnicity, site and TIV were adjusted. The significance of the mediation was estimated by 10,000 bias-corrected bootstrapping.

Transcriptomic analysis
If significant GMVs associated with social isolation and with loneliness were identified, partial least squares (PLS) regression was used to relate the unthresholded t-statistic brain map (the response variable) to the gene expression data (predictor variable). The response variable was calculated by the average t-value of a spherical region with a radius of 4 mm centered by the MNI coordinates of each gene expression sampling site.27 PLS was performed for cortical and subcortical regions separately. The first PLS component (PLS1) was the linear combination of gene expression values maximizing the covariance between the expression profile and GMV differences. The significance of the variance explained by PLS1 was assessed by permutation (5,000 times), in which PLS was re-computed using null t-statistic maps obtained by label shuffling for social isolation or loneliness (denoted as P_{perm}). Bootstrapping (5,000 times) was used to estimate the variability of each gene’s PLS1 weight, and the ratio of the weight to its bootstrapped standard error was used to calculate the z-score.27

Genes with PLS1 weights $z > 4$ (PLS1+) or $z < -4$ (PLS1-) (all $P_{\text{FDR}} < 0.001$) were used to calculate enrichments in both Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) terms of biological processes (eMethod 4). FDR correction for KEGG and GO terms simultaneously was used to determine the significance ($P_{\text{FDR}} < 0.05$). Moreover, we examined whether AD-related dysregulated genes, including 2,444 up-regulated and 2,978 down-regulated genes reported by a recent systematic integrated analysis,33 were expressed most in regions.
that were morphometrically correlated with social isolation (eMethod 5). We also investigated the relationship of GMV differences with the average expression level of up- and down-regulated AD-related genes by Spearman’s correlation, respectively. The significance was tested by permutation, in which the null distribution was defined by 5,000 random t-statistic maps described above.

Results

Demographics

The characteristics of 462,619 participants are shown in Table 1. At baseline, 41,886 (9%) of individuals reported as being socially isolated, and 29,036 (6%) of individuals felt lonely. Compared with controls, both isolated (t(342868) = 9.55, Cohen’s $d = 0.04$, $p < 0.001$) and lonely individuals (t(342868) = 4.76, Cohen’s $d = 0.06$, $p < 0.001$) had worse cognitive function after controlling for age, sex, ethnicity, education and income. Depressive symptoms were significantly associated with cognitive function ($r_p(318891) = 0.04$, $p < 0.001$) after controlling for the same covariates. During a mean follow-up of 11.7 (SD 1.7) years, 4,998 participants developed dementia. At the imaging visit, 32,263 individuals (mean [SD] age 63.5 [7.5] years, 52% were female) were included, in which 2,371 (7%) were socially isolated and 1,503 (5%) were lonely (eTable 2).

Social isolation but not loneliness is associated with the incidence of all-cause dementia
After adjustment (i.e. removal as covariates of no interest) for age, sex and ethnicity, the HR for the incidence of all-cause dementia was 1.64 (95% CI, 1.51-1.78) for social isolation compared with no social isolation. Further adjustment for different risk factors attenuated the association (PERM = 5%-30%). The overall attenuation after adjustment for all covariates was 59% to 1.26 (95% CI, 1.15-1.37; Figure 2). In contrast, the minimally adjusted HR for loneliness was 1.55 (95% CI, 1.40-1.71), but reduced to nonsignificance when all risk factors were included (p = 0.44). Adjustment for depressive symptoms had the greatest impact on the association between loneliness and dementia, which was decreased by 75% (Figure 2).

Consistent findings were found in the complete cases (social isolation: fully adjusted HR = 1.20 [95% CI, 1.02-1.42], loneliness: fully adjusted HR = 1.07 [95% CI, 0.88-1.31]; eFigure 1). Subgroup analyses found that the association between social isolation and dementia was consistent across sex (in females: fully adjusted HR = 1.24 [95% CI, 1.09-1.40], in males: fully adjusted HR = 1.26 [95% CI, 1.12-1.42]; eFigure 2). However, the association was only significant in the elderly group (mean [SD] = 64.6 [2.9] years, 43% of the sample; fully adjusted HR = 1.28 [95% CI, 1.16-1.40]; eFigure 3). Further, the association was only significant in non-depression group (fully adjusted HR = 1.27 [95% CI, 1.15-1.41]; eFigure 4). In the sensitivity analysis using 3-category variables, the risk of all-cause dementia was significantly higher in the most isolated group than in the least isolated group, which was robust in the full adjustment model (HR = 1.27 [95% CI, 1.16, 1.39]) and in complete cases.
Social isolation-related brain structures and the association with cognition

Whole-brain analyses revealed that the volumes of brain structures including the medial temporal lobe, hippocampus, middle temporal gyrus, fusiform gyrus, angular gyrus, and ventromedial prefrontal cortex (e.g. gyrus rectus), and subcortical regions such as the amygdala and thalamus, were negatively associated with social isolation (Figure 3A and eTable 3). The total volumes of the identified regions were significantly lower in socially isolated individuals (t(32253) = -7.92, Cohen’s $d = 0.17$, $p < 0.001$). Similar regions were found when the most isolated individuals were compared with the least isolated ones (eFigure 6). The findings were robust if patients with dementia were excluded (eFigure 7), and similar brain regions were found when further adjusted for loneliness (eFigure 8) or depressive symptoms (eFigure 9).

Using Neurosynth, we found that the significant regions where GMV was smaller in socially isolated individuals than controls tend to be involved in memory and learning tasks (Figure 3B and eTable 4). In the UK Biobank, the total GMV of the significant brain regions was associated with cognitive function at the imaging visit ($r_p(30469) = -0.04$, $p < 0.001$; Figure 3C), and significantly mediated the association between social isolation at baseline and cognitive function at the imaging visit (path ab: $\beta = 0.003$, 4% of the total effect size, $p < 0.001$; Figure 4).
Gene expression profiles in the brain are related to the volume differences in the brain that are related to social isolation

In cortical regions, the PLS1 was significant (i.e., explained 15% of the variance of social isolation-related structural changes, $P_{\text{perm}} < 0.05$). The PLS1 in subcortical regions was not significant ($P_{\text{perm}} = 0.46$). Therefore, we focused on the PLS1 weights in cortical regions in further analyses. Based on the normalized PLS1 weights, there were 2,029 genes in the PLS1+ gene set ($z > 4$) and 1,048 genes in the PLS1- gene set ($z < -4$) (all $P_{\text{FDR}} < 0.001$; eFigure 10). After FDR correction, the PLS1+ gene set was enriched in 38 biological processes such as “mitochondrion organization” and “oxidative phosphorylation”, and 6 KEGG pathways such as “Parkinson’s disease” and “Alzheimer’s disease” (Figure 5A and eTable 5). No significant enrichment results were found for the PLS1- gene set.

Moreover, the PLS1+ gene set was highly enriched among genes that were recently reported as under-expressed in post-mortem brain tissue from patients with AD ($P_{\text{FDR}} < 0.001$; eTable 6). Social isolation-related differences in regional GMVs were positively associated with cortical gene expression of down-regulated AD-related genes ($r_s(711) = 0.13$, $P_{\text{perm}} = 0.02$; Figure 5B) (i.e. genes that are down-regulated in AD are under-expressed in regions with higher levels of differences related to social isolation). No significant spatial correlation with up-regulated AD-related genes was found ($P_{\text{perm}} = 0.28$; Figure 5C).
Discussion

This study provides evidence that social isolation but not loneliness is associated with an elevated risk of all-cause dementia. Socially isolated individuals were found to have lower GMVs of brain regions involved in memory and learning, which partly mediated the relationship between social isolation and cognitive function. Transcriptomic analyses found that social isolation-related brain differences were related to genes that were down-regulated in AD, and to genes that were involved in mitochondrial dysfunction and oxidative phosphorylation. The findings highlight the potential threat of social isolation to cognitive function and risk of dementia, especially in the elderly.

To our knowledge, this is the first large-scale study controlling for various risk factors and quantifying their contributions to the associations of social isolation and loneliness with dementia. Consistent with previous longitudinal studies, we found that social isolation was associated with a 1.26-fold increased risk of developing dementia, which was independent of loneliness and other risk factors. Loneliness was not related to the incidence of dementia after removal of all covariates including social isolation, and 75% of the relationship was attributable to depressive symptoms. Social isolation and loneliness are often weakly correlated, and our results also suggest that these two are related but distinct constructs.

We identified multiple brain regions associated with social isolation in the largest
sample to date, but found no significant association with loneliness. In the UK Biobank, socially isolated individuals had the most severely low GMVs in hippocampus, parahippocampus, thalamus, amygdala and temporal cortex, which was not confounded by loneliness and depressive symptoms. The impact of social stressors on hippocampal morphology has been well documented. The amygdala is involved in emotional processing, and is relevant to social network size. Temporal cortical areas such as the fusiform gyrus and superior and middle temporal gyrus are important for social perception. Experimental manipulation of group size in macaques resulted in variation in the volume of the cortex in the mid-superior temporal sulcus and amygdala.

Cognitive annotation of the significant brain map demonstrated that impaired regions related to social isolation were involved in cognitive processes especially memory and learning. Indeed, we found that the volumes of these regions were positively associated with cognitive function, and partly mediated the association between social isolation at baseline and cognitive function at follow-up which was on average 8.8 years later. Previous epidemiological studies have revealed that social isolation is associated with cognitive function in later life, but evidence on the potential mechanism is sparse. Animal studies suggest that isolation affects cognition by altering the excitatory and inhibitory synaptic density in the hippocampus, and social interaction reversed the memory deficit by increasing hippocampal neurogenesis. For AD, the largest form of dementia, the neuropathological changes

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited
are suggested to start in the hippocampus and related areas and are associated with the early cognitive impairments in learning and memory.41

The gene expression profile of the social isolation-related cortical changes was enriched in biological processes and KEGG pathways closely linked to dementia. It is well established that mitochondrial dysfunction and oxidative damage is critical in aging and neurodegenerative diseases.42 Animal research shows that impairments of mitochondrial function 43 and oxidative phosphorylation 44 precede the development of AD-like pathology. We found more genes that are down-regulated in AD in the list of positively weighted genes with differences in cortical GMVs. Further, the expression level of down-regulated genes was significantly associated with cortical differences. These results suggest that genes with reduced brain post-mortem transcription in AD are under-expressed in cortical regions with higher levels of differences related to social isolation. We also found that the expression of immune-related genes like LCP2 ($z = 7.4$) was significantly associated with social isolation-related cortical differences, consistent with previous studies.14

The following issues should be taken into account when considering our findings. Participants in the UK Biobank had fewer self-reported health conditions and were less likely to live alone than the general population.45 Although it has been reported that the generalizability of exposure-mortality relationship seems to be little limited by the lack of representativeness,46 the extent to which a selection bias would
influence the associations of social isolation and loneliness with dementia risk is unknown. Second, the way we used to identify dementia cases might be insufficient due to the increasing prevalence of dementia within care settings. However, for all-cause dementia, the positive predictive value in combination with primary care, hospital admissions and mortality data in the UK Biobank was relatively high (i.e., 82.5%). The participants used in neuroimaging analyses were population-based (only 29 with dementia). Thus, lower GMVs associated with social isolation found in the present study were not related to dementia directly, although there may be more individuals who will develop dementia during longer follow-up. Finally, cultural factors might moderate the social relationship-health association. For instance, in individualistic societies, living alone might be the consequence of a quest for socioeconomic independence. Although social isolation was defined by multiple items and socioeconomic factors were controlled in the analyses, the findings should be interpreted in a specific cultural context.

We used simple measures to assess multi-layered social factors. Although we found consistent results and a potential dose-dependent association of social isolation with incident dementia and brain volumes using 3-category variables, validation of our findings using well-designed scales is needed. Another point to note is that three quarters of the loneliness-dementia relationship could be attributable to depressive symptoms. However, we found bidirectional associations between social factors and depressive symptoms but the effect was stronger for depression as the initial symptom.
using longitudinal data in the UK Biobank (eFigure 11). Therefore, it is possible that depressive symptoms might be a mediator rather than a simple confounder. Future studies should also pay attention to the trajectories of social isolation and loneliness. Akhter-Khan et al (2021) found persistent loneliness was a risk factor for dementia, while transient loneliness was beneficial.50 In practice, it is impossible to test the hypothesis due to few individuals developing incident dementia when individuals are classified into four trajectories in the UK Biobank. The cognitive tests used in the present study are brief, while cognitive impairments in aging are heterogeneous. In future, it is important to include episodic memory tests, which have been shown to be valid, sensitive tests for the early detection of amnestic mild cognitive impairment and the early stage of AD.

In conclusion, we revealed that social isolation was associated with an increased incidence of dementia independent of loneliness and many potential risk factors. Integrating the neuroimaging and transcriptomic data, we showed that social isolation was related to lower GMVs coupled with different molecular functions, and these structural differences partly mediated the association between social isolation and cognitive function. In the context of the COVID-19 pandemic, which critically exacerbates social isolation, these findings have implications for social relationship interventions.
Reference

47. Matthews FE, Arthur A, Barnes LE, et al. A two-decade comparison of prevalence of dementia in

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>All (n = 462,619)</th>
<th>Social isolation at baseline</th>
<th>Loneliness at baseline</th>
<th>Dementia status during follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not isolated (n = 420,733)</td>
<td>Socially isolated (n = 41,886)</td>
<td>Not lonely (n = 433,583)</td>
<td>Lonely (n = 29,036)</td>
</tr>
<tr>
<td>Age at baseline</td>
<td>57.0 (8.1)</td>
<td>57.0 (8.1)</td>
<td>57.1 (7.8)</td>
<td>56.4 (7.9)</td>
</tr>
<tr>
<td>Men</td>
<td>209,975 (45.4%)</td>
<td>189,783 (45.1%)</td>
<td>20,192 (48.2%)</td>
<td>196,126 (45.2%)</td>
</tr>
<tr>
<td>Caucasian</td>
<td>440,872 (95.3%)</td>
<td>401,773 (95.5%)</td>
<td>39,099 (93.3%)</td>
<td>413,891 (95.5%)</td>
</tr>
<tr>
<td>College or university degree</td>
<td>153,040 (33.1%)</td>
<td>140,452 (33.4%)</td>
<td>12,588 (30.1%)</td>
<td>145,773 (33.6%)</td>
</tr>
<tr>
<td>Annual household income ≥ £31,000</td>
<td>212,029 (45.8%)</td>
<td>200,133 (47.6%)</td>
<td>11,896 (28.4%)</td>
<td>202,766 (46.8%)</td>
</tr>
<tr>
<td>Townsend deprivation index ≥ 2.00</td>
<td>71,365 (15.4%)</td>
<td>59,144 (14.1%)</td>
<td>12,221 (29.2%)</td>
<td>64,166 (14.8%)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>23,264 (5.0%)</td>
<td>20,084 (4.8%)</td>
<td>3,180 (7.6%)</td>
<td>20,954 (4.8%)</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>136,026 (29.4%)</td>
<td>121,661 (29.9%)</td>
<td>14,365 (34.3%)</td>
<td>125,767 (29.0%)</td>
</tr>
<tr>
<td>Cancer</td>
<td>35,753 (7.7%)</td>
<td>32,298 (7.7%)</td>
<td>3,455 (8.2%)</td>
<td>33,618 (7.8%)</td>
</tr>
<tr>
<td>Other disabilities</td>
<td>92,340 (20.0%)</td>
<td>82,054 (19.5%)</td>
<td>10,286 (24.6%)</td>
<td>85,103 (19.6%)</td>
</tr>
<tr>
<td>Current smoker</td>
<td>47,969 (10.4%)</td>
<td>40,137 (9.5%)</td>
<td>7,832 (18.7%)</td>
<td>42,957 (9.9%)</td>
</tr>
<tr>
<td>Alcohol consumption ≥ 3 times/week</td>
<td>204,221 (44.1%)</td>
<td>190,651 (45.3%)</td>
<td>13,570 (32.4%)</td>
<td>193,944 (44.7%)</td>
</tr>
<tr>
<td>Obesity (BMI ≥ 30 kg/m²)</td>
<td>111,803 (24.2%)</td>
<td>99,707 (23.7%)</td>
<td>12,096 (28.9%)</td>
<td>102,659 (23.7%)</td>
</tr>
<tr>
<td>Moderate/vigorous physical activity <1 day/week</td>
<td>77,954 (16.9%)</td>
<td>66,681 (15.8%)</td>
<td>11,273 (26.9%)</td>
<td>71,333 (16.5%)</td>
</tr>
<tr>
<td>High neuroticism (≥ 8)</td>
<td>58,824 (12.7%)</td>
<td>51,572 (12.3%)</td>
<td>7,252 (17.3%)</td>
<td>48,795 (11.3%)</td>
</tr>
<tr>
<td>Depressed mood</td>
<td>21,448 (4.6%)</td>
<td>17,371 (4.1%)</td>
<td>4,077 (9.7%)</td>
<td>15,767 (3.7%)</td>
</tr>
<tr>
<td>Uninterest/unenthusiasm</td>
<td>21,451 (4.6%)</td>
<td>17,371 (4.1%)</td>
<td>4,077 (9.7%)</td>
<td>16,350 (3.8%)</td>
</tr>
<tr>
<td>Tenseness/restlessness</td>
<td>20,087 (4.3%)</td>
<td>16,652 (3.9%)</td>
<td>3,435 (8.2%)</td>
<td>15,527 (3.6%)</td>
</tr>
<tr>
<td>Tiredness/lethargy</td>
<td>55,728 (12.0%)</td>
<td>47,381 (11.3%)</td>
<td>8,347 (20.0%)</td>
<td>47,001 (10.9%)</td>
</tr>
<tr>
<td>Depression diagnosis</td>
<td>82,977 (17.9%)</td>
<td>73,078 (17.4%)</td>
<td>9,899 (23.6%)</td>
<td>74,152 (17.1%)</td>
</tr>
<tr>
<td>Antidepressant medication</td>
<td>33,564 (7.3%)</td>
<td>28,867 (6.9%)</td>
<td>4,697 (11.2%)</td>
<td>29,231 (6.8%)</td>
</tr>
</tbody>
</table>

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.
<table>
<thead>
<tr>
<th>Cognitive function (^a)</th>
<th>0.0 (0.8)</th>
<th>-0.01 (0.8)</th>
<th>0.1 (0.8)</th>
<th>0.0 (0.8)</th>
<th>0.04 (0.8)</th>
<th>0.0 (0.8)</th>
<th>0.4 (0.8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APOE ε4 carrier (^b)</td>
<td>115,395 (24.9%)</td>
<td>105,462 (25.1%)</td>
<td>9,933 (23.7%)</td>
<td>108,419 (25.0%)</td>
<td>6,976 (24.1%)</td>
<td>112,927 (24.7%)</td>
<td>2,424 (48.5%)</td>
</tr>
</tbody>
</table>

\(^a\) the composite score of pairs matching and reaction time tests.

\(^b\) APOE ε2/4, ε3/4 and ε4/4 were collated as ε4 carrier here.
Figure 1 Study flowchart.

Overview of the study population and analyses conducted in this study. SI=social isolation. LO=loneliness. GMV=gray matter volume. AD=Alzheimer’s disease.

GO=gene ontology. KEGG= Kyoto Encyclopedia of Genes and Genomes.
Figure 2 Associations of social isolation and loneliness with incident all-cause dementia, and proportions attributable to different risk factors (n = 462,619).

Minimally adjusted for age, sex and ethnicity. HR=hazard ratio. PERM=percentage of excess risk mediated.
Figure 3 Neuroanatomical correlates of social isolation at the imaging visit.

A. Results of whole-brain voxel-wise analysis of social isolation (n = 32,263). Significant GMVs in cortical and subcortical regions are presented separately. The color bar presents t-value. B. Word-cloud plot of cognitive terms associated with social isolation related GMVs. The size of cognitive terms corresponds to the Spearman’s correlation of corresponding meta-analytic maps in Neurosynth with the significant social isolation t-statistic map. C. Cross-sectional association between social isolation related GMVs and cognitive function in the UK Biobank (n = 30,480). Cognitive function was assessed by the composite score of pairs matching and reaction time tests. The color bar presents the estimated probability density.

Figure 4 Associations of social isolation, gray matter volume and cognitive
function.

Mediation analysis implemented by significant GMVs (mediator) from social isolation at baseline (predictor) on cognitive function at the imaging visit (dependent variable). Path a measures the association between the predictor and the mediator; path b represents the effect of the mediator on the dependent variable while controlling for the predictor; path c measures the total relationship between the predictor and the dependent variable; path c' measures the direct effect; the mediation effect is the product of path a and path b ($a*b$). $n = 30,612$; **$p < 0.01$, ***$p < 0.001$.

![Diagram](https://example.com/diagram.png)
Figure 5 Relationship between social isolation-related brain differences and gene expression.

A. Functional enrichment results of PLS1- genes in cortical regions. GO biological processes and KEGG pathways with a $P_{FDR} < 0.005$ are presented. The size of the circle represents the number of genes involved in a given ontology term. B. Association between social isolation t-value and the average expression level of down-regulated AD-related genes in cortical regions. C. Association between social isolation t-value and the average expression level of up-regulated AD-related genes in cortical regions. The significance was tested by 5,000 times permutation, in which the null distribution was defined by 5,000 random t-statistic maps obtained by label shuffling for social isolation.
Associations of Social Isolation and Loneliness With Later Dementia
Chun Shen, Edmund Rolls, Wei Cheng, et al.

Neurology published online June 8, 2022
DOI 10.1212/WNL.0000000000200583

This information is current as of June 8, 2022

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2022/06/08/WNL.0000000000200583.full

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise