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This Supplementary Material provides a description of the architecture of VisNet3. This
document also contains Supplementary Tables A, B and C which provide the parameters used in
some of the simulations described in the paper [1]. This document also contains a guide to the
Matlab code for VisNet3, which is made available in association with this paper [1].

Descriptions of previous research with VisNet and its architecture, and of the neurophysiology
of the inferior temporal visual cortex which VisNet3 models, are available [2, 3, 4, 5].

1 The architecture of VisNet
Fundamental elements of Rolls’ theory for how cortical networks might implement invariant visual
object recognition are described in detail elsewhere [6, 2, 3, 4, 5], provide the basis for the design
of VisNet3, and can be summarized as:

• A series of competitive networks, organized in hierarchical layers, exhibiting mutual inhibi-
tion over a short range within each layer. These networks allow combinations of features
or inputs occurring in a given spatial arrangement to be learned by neurons, ensuring that
higher-order spatial properties of the input stimuli are represented in the network.

• A convergent series of connections from a localized population of cells in preceding layers
to each cell of the following layer, thus allowing the receptive field size of cells to increase
through the visual processing areas or layers.

• A modified Hebb-like learning rule incorporating a temporal trace of each cell’s previous
activity that enables the neurons to learn transform invariances.

The first two elements of Rolls’ theory [5] are used to constrain the general architecture of a
network model, VisNet, of the processes just described that is intended to learn invariant represen-
tations of objects. The simulation results described in this paper using VisNet show that invariant
representations can be learned by the architecture. It is moreover shown that successful learning
depends crucially on the use of the modified Hebb rule. The general architecture simulated in
VisNet, and the way in which it allows natural images to be used as stimuli, has been chosen to
enable some comparisons of neuronal responses in the network and in the brain to similar stimuli
to be made.

1.1 The short term memory trace synaptic learning rule
The learning rule implemented in the VisNet simulations utilizes the spatio-temporal constraints
placed upon the behaviour of ‘real-world’ objects to learn about natural object transformations.
The concept is that primates typically look at an object for 1 to a few seconds, and in that
time the natural statistics of the world will provide several transforms of that object, which can
be used to learn the different transforms of that object to produce a transform-invariant neural
representation. By presenting consistent sequences of transforming objects the neurons in the
network can learn to respond to the same object through all of its naturally transformed states,
as described in early research [7, 6, 8, 2], with many further developments [9, 10, 3, 4, 5]. The
learning rule incorporates a decaying trace of previous cell activity and is henceforth referred to
simply as the ‘trace’ learning rule. The learning paradigm we describe here is intended in principle
to enable learning of any of the transforms tolerated by inferior temporal cortex neurons, including
position, size, view, lighting, and spatial frequency [6, 11, 12, 5, 3, 4, 5].

To clarify the reasoning behind this point, consider the situation in which a single neuron is
strongly activated by a stimulus forming part of a real world object. The trace of this neuron’s
activation will then gradually decay over a time period in the order of 0.5 s. If, during this limited
time window, the net is presented with a transformed version of the original stimulus then not
only will the initially active afferent synapses modify onto the neuron, but so also will the synapses
activated by the transformed version of this stimulus. In this way the neuron will learn to respond
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to either appearance of the original stimulus. Making such associations works in practice because
it is very likely that within short time periods different aspects of the same object will be being
viewed. The neuron will not, however, tend to make spurious links across stimuli that are part of
different objects because of the unlikelihood in the real world of one object consistently following
another.

Various biological bases for this temporal trace have been advanced as follows:

• The persistent firing of neurons for as long as 100–400 ms observed after presentations of
stimuli for 16 ms [13] could provide a time window within which to associate subsequent im-
ages. Maintained activity may potentially be implemented by recurrent connections between
as well as within cortical areas [14, 12, 5]. [The prolonged firing of inferior temporal cor-
tex neurons during memory delay periods of several seconds, and associative links reported
to develop between stimuli presented several seconds apart [15, 16] are on too long a time
scale to be immediately relevant to the present theory. In fact, associations between visual
events occurring several seconds apart would, under normal environmental conditions, be
detrimental to the operation of a network of the type described here, because they would
probably arise from different objects. In contrast, the system described benefits from asso-
ciations between visual events that occur close in time (typically within 1 s), as they are
likely to be from the same object given the statistics of the inputs being received from the
natural world.]

• The binding period of glutamate in the NMDA channels, which may last for 100 ms or
more, may implement a trace rule by producing a narrow time window over which the
average activity at each presynaptic site affects learning [6, 17, 18, 19, 20].

• Strengthening (long-term potentiation, LTP) or weakening (long-term depression, LTD) of
glutamatergic synapses depends on the post-synaptic influx of calcium (Ca2+): weak influx
leads to LTD, while strong, transient influx causes LTP. The voltage-dependent NMDA
receptors are the main source of Ca2+ influx, but they will only open if a post-synaptic
depolarisation coincides with pre-synaptic neurotransmitter release. The interplay between
the pre-synaptic neurotransmitter release and the post-synaptic membrane potential leads
to distinct Ca2+ time-courses, which in turn lead to the change in synaptic strength where
the timecourse can be 100 ms or more [21].

The trace update rule used in the baseline simulations of VisNet [2] is equivalent to both
Földiák’s used in the context of translation invariance [8] and to an earlier rule [22] explored in
the context of modelling the temporal properties of classical conditioning, and can be summarized
as follows:

δwj = αyτxj (1)

where
yτ = (1− η)yτ + ηyτ−1 (2)

and
xj : jth input to the neuron. y: Output from the neuron.
yτ : Trace value of the output of the

neuron at time step τ .
α: Learning rate. Annealed between

unity and zero.
wj : Synaptic weight between jth input

and the neuron.
η: Trace value. The optimal value

varies with presentation sequence
length.

1.2 Synaptic weight normalisation or scaling in VisNet3
In a competitive network, it is important that all neurons compete on an equal basis, so that
different neurons learn to respond to different inputs, and similar inputs are allocated to the same
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neuron, so that categorisation is performed usefully [5]. The usual way in which this is implemented
in a competitive net is that after learning with a Hebbian associative rule or one with a short term
memory trace in the post-synaptic term y such as that in Equation 1, the length of the vector of
synaptic weights on a neuron is set to one [23, 24, 25, 5]. Given that a Hebbian rule will always
increase synaptic weights if the presynaptic and postsynaptic firing rates are greater than 0, the
synaptic modification will increase some synaptic weights. The weight normalisation (setting the
sum of the squares of the weights = 1) will then decrease the weights usefully [25, 5]. That is what
is implemented in previous implementations of VisNet, by dividing the synaptic weight vector on
a neuron by the length of its synaptic weight vector after its synapses have received an update
[3, 4, 5].

However, setting the length of the synaptic weight vector on each neuron is not very biologically
plausible. So for VisNet3 [1] we introduce an alternative method of allowing each neuron to
compete on an equal basis by using a learning rule that allows synaptic weights to decrease in value
if they are on a strongly activated neuron, and the current weight is larger than the presynaptic
term. This provides for heterosynaptic long-term depression, which as many experimentalists
will know, is easier to obtain if the synaptic weights are already high, in addition to long-term
potentiation. The rule we introduce for VisNet3 is

δwj = αy(xj − wj) (3)

This rule was used in different applications previously [26, 27, 25], and has been termed the
‘standard competitive net learning rule’ [25]. In the main text of this paper [1] we compare the
operation of VisNet3 using this ‘standard competitive network rule’ shown in Equation 3, with
the weight normalisation used in VisNet [3, 4], and with the Oja rule [28, 25] shown in Equation 4

δwj = αy(xj − ywj) (4)

which though somewhat similar to what is shown in Equation 3 can normalise the synaptic weight
vector and is we suggest less biologically plausible than the Rule shown in Equation 3. It is shown
in the main text [1] that training VisNet3 with Equation 3 produces somewhat better performance
than with Equation 4, and much better than that achieved with the associative learning and weight
normalisation used in VisNet.

1.3 Limiting the maximum synaptic weight on a neuron
With normal Hebbian learning using a rule like that shown in Equation 1 (but without a short-
term memory trace on the post-synaptic term y) some synaptic weights might continue to increase
to high values, especially if some features are present in different objects. It seems biologically
implausible that synaptic weights could grow without bound, so we have investigated limiting the
maximum value that a synaptic weight on a neuron can reach (set with MAX − WEIGHT in
the Matlab code for VisNet3). We in fact propose that this could be beneficial, by encouraging
neurons not to rely on a few strong synaptic weights from high-firing inputs to the neuron, but
to grow weights from a number of inputs, in order to increase the sampling of information from
the preceding layer by producing a more distributed representation for what is learned by each
neuron. We show in the simulations presented in the text of the paper [1] that this can be useful
for increasing the memory capacity in at least large network versions of VisNet3. This process is
typically combined with other methods to scale the weights on a neuron, such as the procedure
implemented in Equation 3.

1.4 The network implemented in VisNet3
The VisNet3 network is designed as a series of hierarchical, convergent, competitive networks, in
accordance with the hypotheses advanced above. The actual network consists of a series of four
layers, constructed such that the convergence of information from the network’s input layer can
potentially influence firing in any single neuron in the final layer – see Fig. A. This is consistent
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Figure A: Convergence in the visual system. Right – as it occurs in the brain. V1, visual cortex
area V1; TEO, posterior inferior temporal cortex; TE, anterior inferior temporal cortex (IT). Left
– as implemented in VisNet. Convergence through the network is designed to provide fourth layer
neurons with information from across the entire input retina.

with what is found in the primate visual system [29, 6, 5]. Layer 1 of VisNet3 corresponds to
V2, and receives inputs from V1. Layer 2 of VisNet3 corresponds to V4, Layer 3 to the posterior
inferior temporal visual cortex region TEO in macaques, and Layer 4 of VisNet3 corresponds to
the anterior temporal lobe visual cortex region TE in macaques (Fig. A). The forward connections
to a cell in one layer are derived from a topologically related and confined region of the preceding
layer. The choice of whether a connection between neurons in adjacent layers exists or not is based
upon a Gaussian distribution of connection probabilities which roll off radially from the focal point
of connections for each neuron. (A minor extra constraint precludes the repeated connection of
any pair of cells.) In particular, the forward connections to a cell in one layer come from a small
region of the preceding layer defined by the radius in Table A which will contain approximately
67% of the connections from the preceding layer. The radii are scaled up linearly for larger versions
of VisNet3. Table A shows the dimensions and default parameters for a small version of VisNet3.
Table B shows the dimensions and default parameters for a large version of VisNet, with 256×256
neurons in each layer, and up to 2000 synapses per neuron.
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Table A: VisNet3 dimensions and parameters1
Dimensions # Connections Radius

Layer 4 32x32 200 7
Layer 3 32x32 200 7
Layer 2 32x32 200 7
Layer 1 32x32 340 15
Input layer 256x256x32 – –

Figure A shows the general convergent network architecture used. Localization and limitation
of connectivity in the network is intended to mimic cortical connectivity, partially because of the
clear retention of retinal topology through early visual cortical regions. This architecture also
encourages the gradual combination of features from layer to layer which has relevance to the
binding problem [3, 4, 5].

To avoid issues at the edges of VisNet, the connectivity wraps into a toroid, such that connec-
tions map back onto the network from opposite sides and from the top and bottom. This wrapping
happens at all four layers of the network, and in the way an image on the ‘retina’ is mapped to the
input filters. This solution has the advantage of making all of the boundaries effectively invisible
to the network, as described previously [2].

1Notes for Table A on the default parameters. Where there are 4 values, these are for Layers 1-4 respectively.
Learning Rule: Standard Competitive Net, Equation 3.
Learning Rate α = = [0.025 0.025 0.025 0.025].
SPARSENESS = [0.01 0.01 0.01 0.01]
ETA = [0.0 0.8 0.8 0.8] the trace rule value for each layer.
TrainEpochs = [20 20 20 20] the number of training epochs.
MAX-WEIGHTS if clipped: [0.1 0.1 0.1 NotClipped]
BETA = [10 10 10 10] for the sigmoid activation function.
Number of training objects: 20, each with 9 views.
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Table B: VisNet3 dimensions and parameters for a larger version2
Dimensions # Connections Square

Layer 4 256x265 1000 11*8*2+1
Layer 3 256x256 1000 11*8*2+1
Layer 2 256x256 1000 11*8*2+1
Layer 1 256x256 340 15*2+1
Input layer 256x256x32 – –

1.5 Competition and lateral inhibition
In order to act as a competitive network some form of mutual inhibition is required within each
layer, which should help to ensure that all stimuli presented are evenly represented by the neurons
in each layer [5]. This is implemented in VisNet by a form of lateral inhibition. The idea behind
the lateral inhibition, apart from this being a property of cortical architecture in the brain, is to
prevent too many neurons that receive inputs from a similar part of the preceding layer responding
to the same activity patterns. One purpose of the lateral inhibition is to ensure that different
receiving neurons code for different inputs. This is important in reducing redundancy [5]. The
lateral inhibition is conceived as operating within a radius that is similar to that of the region
within which a neuron receives converging inputs from the preceding layer (because activity in one
zone of topologically organized processing within a layer should not inhibit processing in another
zone in the same layer, concerned perhaps with another part of the image) [2, 9]. The lateral
inhibition is implemented in VisNet3 by convolving the firing rates in a layer with a 2D difference
of Gaussian filter with the general form illustrated in Fig. B. The parameters for 32x32 VisNet3
are a Gaussian with width 0.2 from which is subtracted a Gaussian with width 4. This provides a
filter that does not alter the mean firing rate. The size of the filter may be scaled up for sizes of
VisNet3 larger than 32x32.

A sigmoid activation function is used in VisNet3, with the threshold or bias α used to set the
sparseness of the firing rate representation in a layer to implement a form of competition between
the neurons. The sigmoid was calculated as

y = fsigmoid(r) =
1

1 + e−2β(r−α)
(5)

where r is the activation (or firing rate) of the neuron after the lateral inhibition, y is the firing
rate after the contrast enhancement produced by the activation function, and β is the slope or
gain and α is the threshold or bias of the activation function. The sigmoid bounds the firing rate
between 0 and 1 so global scaling is not required.

The (population) sparseness a of the firing within a layer that was used to set α is defined
[14, 30, 31, 5] as:

a =
(
∑

i yi/n)
2∑

i y
2
i /n

(6)

where n is the number of neurons in the layer. To set the sparseness to a given value, e.g. 0.01,
the threshold or bias of the activation function α is set to the sparseness required. The sparseness

2Notes for Table B on the default parameters. Where there are 4 values, these are for Layers 1-4 respectively.
The column headed ‘Square’ indicates that for the large scale simulations, the inputs came from a square region of
the preceding layer, not the usual 2D Gaussian region.
Learning Rule: Standard Competitive Net, Equation 3.
Learning Rate α = [0.005 0.005 0.005 0.005].
SPARSENESS = [0.0025 0.0025 0.0025 0.0025]
ETA = [0.0 0.8 0.8 0.8] the trace rule value for each layer.
TrainEpochs = [50 50 50 50] the number of training epochs.
MAX-WEIGHTS [0.06 0.06 0.06 Not set]
BETA = [100 100 100 100] for the sigmoid activation function.
Number of training objects: 50 - 800, each with 9 views.
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Figure B: Lateral inhibition filter, which was implemented by a Difference of Gaussians filter (see
text).

value used in the simulations was 0.01 unless otherwise stated. The value used for β was 10.

1.6 The input to VisNet
VisNet is provided with a set of input filters that can be applied to an image to produce inputs
to the network which correspond to those provided by simple cells in visual cortical area 1 (V1)
(Fig. C). The purpose of this is to enable within VisNet the more complicated response properties
of cells between V1 and the inferior temporal cortex (IT) to be investigated, using as inputs
natural stimuli such as those that could be applied to the retina of the real visual system. This
is to facilitate comparisons between the activity of neurons in VisNet and those in the real visual
system, to the same stimuli. In VisNet no attempt is made to train the response properties of
simple cells, but instead we start with a defined series of filters to perform fixed feature extraction
to a level equivalent to that of simple cells in V1, as have other researchers [32, 33, 34], because
we wish to simulate the more complicated response properties of cells between V1 and the inferior
temporal cortex (IT).

Gabor filters produce good results with VisNet [35], and are what is implemented in VisNet3.
Following [36] the receptive fields of the simple cell-like input neurons are modelled by 2D-Gabor
functions. The Gabor receptive fields have five degrees of freedom given essentially by the product
of an elliptical Gaussian and a complex plane wave. The first two degrees of freedom are the
2D-locations of the receptive field’s centre; the third is the size of the receptive field; the fourth is
the orientation of the boundaries separating excitatory and inhibitory regions; and the fifth is the
symmetry. This fifth degree of freedom is given in the standard Gabor transform by the real and
imaginary part, i.e by the phase of the complex function representing it, whereas in a biological
context this can be done by combining pairs of neurons with even and odd receptive fields. This
design is supported by experimental work [37], which found simple cells in quadrature-phase pairs.
Even more, Daugman [36] proposed that an ensemble of simple cells is best modelled as a family
of 2D-Gabor wavelets sampling the frequency domain in a log-polar manner as a function of
eccentricity. Experimental neurophysiological evidence constrains the relation between the free
parameters that define a 2D-Gabor receptive field [38]. There are three constraints fixing the
relation between the width, height, orientation, and spatial frequency [39]. The first constraint
posits that the aspect ratio of the elliptical Gaussian envelope is 2:1. The second constraint
postulates that the plane wave tends to have its propagating direction along the short axis of
the elliptical Gaussian. The third constraint assumes that the half-amplitude bandwidth of the
frequency response is about 1 to 1.5 octaves along the optimal orientation. Further, we assume
that the mean is zero in order to have an admissible wavelet basis [39].

In more detail, the Gabor filters are constructed as follows [35]. We consider a pixelized grey-
scale image given by a N ×N matrix Γorig

ij . The subindices ij denote the spatial position of the
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Figure C: The filter sampling paradigm. Here each square represents the retinal image presented to
the network after being filtered by a Gabor filter of the appropriate orientation sign and frequency.
The circles represent the consistent retinotopic coordinates used to provide input to a layer 1 cell.
The filters double in spatial frequency towards the reader. Left to right the orientation tuning
increases from 0o in steps of 45o, with segregated pairs of positive (P) and negative (N) filter
responses.

pixel. Each pixel value is given a grey level brightness value coded in a scale between 0 (black)
and 255 (white). The first step in the preprocessing consists of removing the DC component of
the image (i.e. the mean value of the grey-scale intensity of the pixels). (The equivalent in the
brain is the low-pass filtering performed by the retinal ganglion cells and lateral geniculate cells.
The visual representation in the LGN is essentially a contrast invariant pixel representation of the
image, i.e. each neuron encodes the relative brightness value at one location in visual space referred
to the mean value of the image brightness.) We denote this contrast-invariant LGN representation
by the N ×N matrix Γij defined by the equation

Γij = Γorig
ij − 1

N2

N∑
i=1

N∑
j=1

Γorig
ij . (7)

Feedforward connections to a layer of V1 neurons perform the extraction of simple features like
bars at different locations, orientations and sizes. Realistic receptive fields for V1 neurons that
extract these simple features can be represented by 2D-Gabor wavelets. Lee [39] derived a fam-
ily of discretized 2D-Gabor wavelets that satisfy the wavelet theory and the neurophysiological
constraints for simple cells mentioned above. They are given by an expression of the form

Gpqkl(x, y) = a−kΨΘl
(a−k(x− 2p), a−k(y − 2q)) (8)

where
ΨΘl

= Ψ(x cos(lΘ0) + y sin(lΘ0),−x sin(lΘ0) + y cos(lΘ0)), (9)

and the mother wavelet is given by

Ψ(x, y) =
1√
2π

e−
1
8 (4x

2+y2)[eiκx − e−
κ2

2 ]. (10)

In the above equations Θ0 = π/L denotes the step size of each angular rotation; l the index
of rotation corresponding to the preferred orientation Θl = lπ/L; k denotes the octave; and the
indices pq the position of the receptive field centre at cx = p and cy = q. In this form, the
receptive fields at all levels cover the spatial domain in the same way, i.e. by always overlapping
the receptive fields in the same fashion. In the model we use a = 2, b = 1 and κ = π corresponding
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to a spatial frequency bandwidth of one octave. It is possible in VisNet to use both symmetric and
asymmetric filters (as both are present in V1 [40]); with the angular spacing between the different
orientations set to 45 degrees; and with 8 filter frequencies spaced one octave apart starting with
0.5 cycles per pixel, and with the sampling from the spatial frequencies set as shown in Table C.

Cells of Layer 1 receive a topologically consistent, localized, random selection of the filter re-
sponses in the input layer, under the constraint that each cell samples every filter spatial frequency
and receives a constant number of inputs. Figure C shows pictorially the general filter sampling
paradigm.

Table C: VisNet layer 1 connectivity. The frequency is in cycles per pixel.
Frequency 0.5 0.25 0.125 0.0625
# Connections 256 64 16 4

Of the 340 connections to each neuron in Layer 1, the number to each frequency group in
VisNet3 is as shown in Table C. In VisNet3 by default only even symmetric – ‘bar detecting’ –
filter shapes are used, which take the form of Gabor filters that simulate V1, the primary visual
cortex.

1.7 Measures for network performance
Measures of network performance based on information theory and similar to those used in the
analysis of the firing of real neurons in the brain [5, 31] are described for VisNet [9, 3, 5] and were
used here to check network performance.

A single cell information measure considers the maximum amount of information the cell has
about any one stimulus / object independently of which transform (e.g. view of the object) is
shown. Because the competitive algorithm used in VisNet tends to produce local representations
(in which single cells become tuned to one stimulus or object), this information measure can
approach log2 NS bits, where NS is the number of different stimuli. Indeed, it is an advantage
of this measure that it has a defined maximal value, which enables how well the network is
performing to be quantified. High information measures show that cells fire similarly to the
different transforms of a given stimulus (object), and differently to the other stimuli. The single
cell stimulus-specific information, I(s,R), is the amount of information the set of responses, R,
has about a specific stimulus, s (see [41, 9]). I(s,R) is given by

I(s,R) =
∑
r∈R

P (r|s) log2
P (r|s)
P (r)

(11)

where r is an individual response from the set of responses R of the neuron. For each cell the
performance measure used was the maximum amount of information a cell conveyed about any one
stimulus. This (rather than the mutual information, I(S,R) where S is the whole set of stimuli s),
is appropriate for a competitive network in which the cells tend to become tuned to one stimulus.
(I(s,R) has also been called the stimulus-specific surprise [42, 31]. Its average across stimuli is
the mutual information I(S,R).)

A multiple cell information measure is also used with VisNet, as follows. If all the output
cells of VisNet learned to respond to the same stimulus, then the information about the set of
stimuli S would be very poor, and would not reach its maximal value of log2 of the number of
stimuli (in bits). The second measure that is used here is the information provided by a set of cells
about the stimulus set, using the procedures described by [43, 9]. The multiple cell information
is the mutual information between the whole set of stimuli S and of responses R calculated using
a decoding procedure in which the stimulus s′ that gave rise to the particular firing rate response
vector on each trial is estimated. (The decoding step is needed because the high dimensionality of
the response space would lead to an inaccurate estimate of the information if the responses were
used directly, as described by [43, 14].) A probability table is then constructed of the real stimuli
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s and the decoded stimuli s′. From this probability table, the mutual information between the set
of actual stimuli S and the decoded estimates S′ is calculated as

I(S, S′) =
∑
s,s′

P (s, s′) log2
P (s, s′)

P (s)P (s′)
(12)

This was calculated for the subset of cells which had as single cells the most information about
which stimulus was shown. In particular, in [9] and subsequent papers, the multiple cell informa-
tion was calculated from the first five cells for each object that had maximal single cell information
about that object, that is from a population of 50 cells if there were ten stimuli (each of which
might have been shown in for example 9 views).

Full details and code for these information theoretic measure are provided elsewhere [3, 5].
In the research described here, an Object Selectivity measure was also used, to assess how well

a trained network responded differently to all objects, and to all transforms of each object. This
object selectivity measure was derived from the correlation matrices between stimuli, illustrated
for example in Fig. 2 of the main text [1]. The object selectivity measure was the correlation
between the different transforms of an object, divided by (the optimal correlation between the
transforms of an object + the responses to any other objects). The maximum value for perfect
view invariance for each object and no response to any other object is 1.0, and the minimal value
is 0.
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