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Abstract

How transform-invariant visual representations of objects and faces are learned

in the ventral visual cortical pathway is a massive computational problem. Here

we describe key advances towards a biologically plausible four-layer network that
performs these computations from the primary visual cortex to the inferior temporal
visual cortex. The architecture is a four-layer competitive network with layer-to-layer
convergence using a short-term memory trace local synaptic learning rule to asso-
ciate transforming inputs from an object during natural viewing. The key advances
towards biological plausibility include: (1) a synaptic modification rule including
long-term depression dependent on synaptic strength instead of artificial synap-

tic weight normalization; (2) limiting the strength of synapses promotes distributed
weights, improving transform-invariant learning; (3) reducing the ability of low firing
rate neurons to participate in learning analogous to the NMDA receptor non-linearity
can increase the storage capacity; (4) demonstrated network scalability towards high
capacity. These advances have many implications for better understanding of cortical
computations. These advances in biological plausibility of this approach are com-
pared with artificial networks of the same ventral cortical processing stream that do
not use a local synaptic learning rule and are less biologically plausible, and implica-
tions for Al models are described.

Author summary

The ventral visual cortical stream of primates including human computes how
to represent faces and objects and to identify them from any view. Here we
describe a biologically plausible model of this cortical processing in a four-layer
model from the primary visual cortex to the inferior temporal visual cortex. The
model forms combinations of features from stage to stage of the hierarchy, and
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learns view invariant representations by using a slow synaptic learning rule

that helps to associate together different views of an object while it transforms
from view to view. Here we introduce a biologically plausible learning rule that
increases synaptic strengths if there is postsynaptic and pre-synaptic activity,

but decreases the synaptic strength if there is postsynaptic but little presynaptic
activity, with the decrease being greater if the synaptic weight is strong. This,
and clipping the synaptic weights to a biologically plausible maximum value, help
to improve performance so that hundreds of objects or faces can be trained in a
network of modest size (256 x 256 neurons in each layer, with 1000 synapses on
each neuron). This provides a biologically plausible model of how humans and
other primates learn view-invariant representations of objects and faces, and is
contrasted with Al approaches.

1. Introduction

Rolls and colleagues discovered neurons in the inferior temporal visual cortex with
transform-invariant responses to faces and objects [1—7]. The neurons have repre-
sentations that are remarkably invariant with respect to translation, size, contrast,
spatial frequency, viewing distance, and in some cases view [3,8—13]. Transform
invariance is important as a neuronal output of the object and face cortical visual
system, for then structures that learn associations of these faces and objects with
other stimuli such as reward for the orbitofrontal cortex and amygdala, and viewed
location for the hippocampus, will generalize correctly to the same face or object if it
is seen later in a different view or other transform. These discoveries [5,7,9,14], and
discoveries on how these neurons code for faces and objects [15], have been fol-
lowed up in many subsequent investigations [16—34]. In more recent work, we have
followed these pathways using MRI and MEG connectivity analyses in the human
ventrolateral cortical visual stream to posterior inferior temporal visual cortex regions
FFC, TE2p and TE1p [35-37], and have shown that not only are these regions
activated by faces and objects such as tools and body parts, but that further cortical
regions are activated that represent the semantic properties of the objects, such as
that they move [38].

Rolls then investigated how these remarkable neurons might be generated in the
cortical regions from V1 to the inferior temporal visual cortex, and proposed that all
these invariances might be learned due to the statistics of the natural visual world, in
which several transforms of a particular object or face typically occur close together
in time [39]. Rolls proposed that this type of learning from the natural statistics of the
visual world could be performed using slow learning with an associative learning rule
with a short-term memory trace lasting 1-3 s operating in a feature combination hier-
archical network of the type illustrated in Fig 1 [39]. (A trace learning rule had been
suggested for translation invariance in a one-layer net by Foldiak [40]). This was tested
in the four layer network illustrated in Fig 1a [41], VisNet. The input to Layer 1 comes
from a simulation of V1 using Gabor filters [42]. VisNet simulates how the receptive
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Fig 1. Architecture of VisNet and the visual cortex for transform-invariant object and face identification. a. Convergence in the visual system.
Right — convergence in the ventral stream cortical hierarchy for object recognition. LGN, lateral geniculate nucleus; V1, visual cortex area V1; TEO,
posterior inferior temporal cortex; TE, anterior inferior temporal cortex (IT). Left — convergence as implemented in VisNet, the model of invariant visual
object recognition described here. Convergence through the hierarchical feedforward network is designed to provide Layer 4 neurons with information
from across the entire input retina, by providing an increase of receptive field size of 2.5 times at each stage. Layer 1 of the VisNet model corresponds
to V2 in the brain, and Layer 4 to the anterior inferior temporal visual cortex (TE). In this paper ‘Layer’ with a capital L indicates a Layer of a neuronal
network which may correspond to a brain region as here. This is distinct from the 6 architectonic layers in neocortex, designated here with a small letter |
in ‘layer’. b: Computations performed by VisNet3. Images are filtered with Gabor filters with four spatial frequencies, four orientations, and positive or
negative to simulate V1 neuronal activity. V1 connects to V2 using a competitive net to learn feature combinations. V2 connects to V4, which connects
to posterior inferior temporal cortex, which connects to anterior temporal cortex using a competitive net at each stage trained with a short-term memory
rule to learn the transforms of an object that occur together close in time. By the last stage, anterior inferior temporal cortex, one set of neurons responds
to every transform of a given object, and to no transforms of different objects. The panels show the firing rates in each layer of a 32x32 neuron VisNet3
to each transform of one object, where white is the maximum firing rate in the rate simulation, and black is zero. A sparse distributed representation is
evident, as in the neocortex.

https://doi.org/10.137 1/journal.pcbi.1013959.9001
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field sizes of inferior temporal cortex neurons shrink to about the size of a single object in complex natural scenes [11,43,44],
which helps to provide clear information that can be transmitted from the inferior temporal cortex to the connected memory
systems about the object or face being fixated [9]. VisNet can also operate using a saliency map to locate objects in complex
natural scenes, and then identify them [45]. Many different versions of the local learning rule involving just pre-synaptic and
post-synaptic terms (i.e., without any backpropagation of error used in artificial deep learning networks, but including error
correction and temporal difference learning) have been developed for VisNet [46—49]. Trace rule learning is an example of
slow learning, has been adopted by others [50-52], and has many potential applications [49,53,54].

Key issues now need to be investigated, and provide the aims of the research described here, which all aim at enhancing
biological plausibility. The first aim is to develop the synaptic modification rule used in VisNet to make it more biologically plau-
sible. At present, in order to ensure that all neurons are equally available for learning new feature combinations and compete
on an equal basis, the length of the synaptic weight vector of each neuron is normalized to 1 after every synaptic update
[46—49], following investigations in competitive networks [9,55,56]. Here we investigate use in VisNet3 of a learning rule that
allows for weights to decrease depending on their strength, consistent with the empirical observation that long-term synaptic
depression is easier to obtain if the synaptic weights are already strong. The learning rule provides not only for a Hebbian
associative increase in synaptic weight if the pre-synaptic and post-synaptic terms are both high, but also for heterosynaptic
long-term depression in which a synapse decreases in strength if the post-synaptic activation is high, but the presynaptic firing
is low relative to the strength of that synaptic weight, as set out in Equation 5 (see [9] Equations B.32 and B.33). We also test
in VisNet3 use of the Oja rule [57], which is more complicated and perhaps less biologically plausible than what has just been
described (see Equation 6), but can normalize the length of the synaptic weight vector on each neuron [56,57].

The second aim is to investigate whether having an upper limit on the strength (weight) of each synapse, which seems
very biologically plausible and indeed likely, might in fact have computational advantages by helping more distributed
synaptic weights to form on each neuron. We hypothesize that in a network such as VisNet3 this could help to limit the
effect of some features present in different exemplars in the training set such as rectangular shapes that would with an
unbounded Hebbian synaptic association rule lead to continuing climbing of some weights relative to others, and hence to
difficulty in discriminating between such objects. We further hypothesize that the self-limiting synaptic rule shown in Equa-
tion 5 may help with this computational issue.

The third aim is to investigate whether removing the lower firing rates produced by the sigmoid activation function from
the learning may help the operation of the network, especially in large versions of the network. This may have an effect
like that of the voltage-dependent NMDA non-linearity in the associative learning rule for neurons [9], by allowing learning
only for the most strongly activated neurons in the network.

Code for a new version of VisNet, VisNet3, is made available with this paper to incorporate the options described in
aims 1-3, to make them very clear, and to enable experimentation with these optional extra features.

The fourth aim is to test the operation of the network at much larger scale than the 32x32 neurons in each of 4 layers of
the network used in the standard model version of VisNet [49], in order to test how the model scales up, and to provide a
potential basis for the model to be incorporated into an integrate-and-fire model of the human brain [58].

The fifth aim is (mainly in the Discussion) to compare the present approach to a biologically plausible brain-like network
for invariant visual object recognition with less biologically plausible models that utilize backpropagation of error learning
in deep networks [59—62] and lateral propagation of synaptic weights as in deep convolution networks [61,63].

2. Methods: Unsupervised slow learning of transform-invariant representations in a model of the
ventral visual system, VisNet3

2.1. The architecture of VisNet3

The hierarchical organization after V1 of VisNet via V2 and V4 to the posterior inferior temporal visual cortex and then
anterior temporal visual cortex with convergence from stage to stage and competitive learning is a way to set up neurons
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with large receptive fields that could become tuned to feature combinations that represent objects, and to produce
transform-invariant representations (Fig 1a) [9,39,48,49]. VisNet is a feature hierarchy network (described in detail in S1
Appendix and elsewhere [9,64]), that emulates to some extent the sparse distributed and transform-invariant encoding
that is found for objects and faces in the ventral visual system [9,15]. The hierarchical organization is important for brain
systems to learn about the natural world, because it means that a single neuron need receive only a limited number
(~10,000) of inputs from the previous stage (Fig 1a). Important aspects of the design to make it biologically plausible is
that the whole problem is solved in a network with only 4 Layers; that a local synaptic learning rule is used; that the com-
putation is feedforward, with no feedback of errors or anything similar required for learning; that there is no supervision of
the training by for example separate teachers for each neuron in the output Layer; and that the natural statistics provided
by objects as they transform in the world are used to learn transform-invariant representations.

In more detail, VisNet is a rate model that consists of a series of feedforward hierarchically connected competitive
networks with convergence from Layer to Layer, with four Layers, as illustrated in Fig 1a and 1b and as described in detail
in the S1 Appendix. The connections to a neuron in one Layer come from a confined and topologically related region of
the preceding Layer. These connections to a neuron in one Layer come from a small region of the preceding Layer using
a Gaussian distribution of connection probabilities defined by the radius that will contain approximately 67% of the con-
nections from the preceding Layer. Table 1 shows this radius for each Layer of a network with 32 x 32 neurons per Layer,
with each neuron receiving 200 synaptic connections from the neurons in the preceding Layer. The radii are set so that
neurons in the fourth Layer of VisNet are able to be influenced by inputs from a stimulus at any location in Layer 1 [48].
Details with parameters used in a small network are provided in Table Ain S1 Appendix, and in a larger 256x256 VisNet3
with up to 1000 synapses per neuron in Table B in S1 Appendix. The activation of a neuron is calculated as the synapti-
cally weighted sum of the rate inputs it receives from the preceding Layer, i.e., as a dot or inner product between the input
rates and the synaptic weights [9,46,48,65]. The activations are converted into rates with a sigmoid or threshold-linear
activation function, with the sparseness of the representation in a Layer set as described in Section 2.3 and in more detail

in S1 Appendix.

2.2. The short-term memory trace learning rule used in VisNet

A key part of the proposal for VisNet is learning that uses a short-term memory trace for previous neuronal activity, so
that the neurons could learn to respond to different transforms of an object, which in the real world typically occur close
together in time [39]. A similar principle had been proposed for translation invariance in a one-layer network [40], but Rolls
extended this to all types of invariance, and outlined how this could be set up in a hierarchical model of processing in the
ventral cortical visual stream to the inferior temporal visual cortex [39]. The full model was built [41,66], which is known as
VisNet [48], and a reduced version of which in Matlab is available with Brain Computations and Connectivity [9]. The trace

Table 1. VisNet3 default parameters for the Matlab small version (see also Table A in S1 Appendix). Dimensions shows the number of neu-
rons in each of the 4 Layers. # Connections shows the number of synaptic connections onto each neuron. Radius shows the radius of the
connectivity from the previous Layer of a single neuron (see text). This is for the small tutorial version of VisNet3 written in Matlab and made
available with this paper. This tutorial version of VisNet3 can be scaled up to at least 256x256 neurons per Layer, and 1000 synaptic connec-
tions to each neuron.

Dimensions # Connections Radius
Layer 4 32x32 200 7
Layer 3 32x32 200 7
Layer 2 32x32 200 7
Layer 1 32x32 340 15
Input layer 256x256x32 - -

https://doi.org/10.1371/journal.pcbi.1013959.t001
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learning rule is biologically plausible, and could involve processes such as the long time constant of NMDA receptors,
or local cortical attractor network operations, which do keep cortical neurons firing for a few hundred ms after a stimulus
[9,67,68].

The short-term memory trace that enables inputs occurring close together in time, as they would in the natural world,
to become associated is implemented in the hierarchical competitive network [9,48] model by using associative synaptic
modification with a small change that allows the postsynaptic term to remain active for short periods in the order of 100ms
or more. The short-term memory trace update learning rule that we have used has the following form [9,48]:

oW = ay’x; (1)

where
Vo= A=)y +uy 2)

and

x; is the /™ input to the neuron;

y is the output from the neuron;

y": is the Trace value of the output of the neuron at time step ;

a is the learning rate;

w; is the synaptic weight between /1 input and the neuron;

7 is the trace update proportion, with 0 meaning no trace, just associative learning. The optimal value varies with the
number of transforms of each object, and is typically 0.8. During training, the firing yt of a neuron in a layer to the presen-
tation of a transform of an object is computed as described in this Methods section and in the Supplementary Material,
and the short-term memory trace y™ is then updated as shown in Equation 2. The synaptic weights are then updated after
every presentation of a view of an object as shown in Equation 1 using this short-term memory trace y".

Many variations of this learning rule have been explored [46,47]. It was demonstrated that a modified Hebbian rule that
incorporates a trace of previous activity but no contribution from the current activity can offer substantially improved per-
formance for trace-rule learning [46]. We then showed how this rule can be related to error correction rules, and explored
a number of error correction rules that can be applied to and can produce better invariant pattern recognition learning
than the simple rule shown in Equation 1. An explicit relationship to temporal difference learning was then demonstrated,
and from that further learning rules related to temporal difference learning were developed [47]. However, because errors
needed to be calculated for these learning rules, and that may not be biologically plausible, the default rule used in
research with VisNet including that described here is the simple Hebbian type of associative learning rue shown in Equation
1, as that is biologically plausible. The general form of the rule for computational purposes can be as shown in Equation (1),
but the actual mechanism in the brain might utilize a slow synaptic eligibility trace such as provided by the NMDA receptors
with their long time constant, as well as a tendency for neuronal firing to continue due to local attractor networks [9,48].

During training, all transforms of one object are presented in random sequence so that the trace rule can help learn-
ing that all of these are transforms of the same object because they occur close together in time; then all transforms of
another object are shown; etc. This emulates how one object at a time is typically looked at in the natural visual world.

As described previously [46], the learning is somewhat better if the trace term ¥” used in Equation (1) is from the pre-
vious timestep only without a contribution from the present transform (e.g., view) about which no learning may yet have
taken place, and that is incorporated by default in the VisNet Matlab code that is made available, and was used in the sim-
ulations described here. That can be described as using a trace }77_1. (The reason that this is useful is that the synapses
are updated based on the previous views seen recently of an object, without including any firing produced by the current
view of the object, which might not have been seen before or learned about well yet.)
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Layer 1 of VisNet is trained with a purely associative learning rule with no short-term memory trace, to enable feature com-
bination neurons to be formed that represent the relative spatial locations of the features before any invariance learning starts
in Layer 2. This helps to solve the feature binding problem, as described below and elsewhere [6,9,41,48]. By feature binding,
we mean forming a neuron that responds for example to a vertical and horizontal bar in a given spatial arrangement so that for
example an ‘L feature is formed. It is essential to perform some feature binding before transform invariance is computed, for
otherwise all the shape descriptors necessary to describe an object would be jumbled up with respect to each other, and no par-
ticular shape could be specified. The operation of feature hierarchy networks is described in detail elsewhere [6,9].

2.3. Competition and mutual inhibition in VisNet

Each layer of VisNet operates as a form of competitive network, in which different neurons learn to represent different cate-
gories of inputs, as described next and in more detail elsewhere [9]. In a competitive network, an input vector of firing rates is
applied to the randomly initialised synaptic weight vectors on each neuron, some neurons are activated more than others, and
inhibition between the neurons leads to a small subset of neurons remaining firing after the competitive interaction implemented
by the inhibitory neurons. The synaptic weights of each neuron then learn by associative learning based on the presynaptic
and postsynaptic firing rates. In a competitive network [9], mutual inhibition is required between the neurons within each Layer,
so that for any one input stimulus only a proportion of neurons is active. This selection is performed in VisNet3 by setting a
threshold such that only a set of the most activated neurons corresponding to the sparseness required is selected to be firing
within a layer. For example if the sparseness a defined in Equation 3 is 0.01, then 1% of the neurons would be selected to be
firing within a layer for that stimulus. This is thus not a winner-take-all network, but has graded firing rates of neurons with a
sparseness that defines the proportion of neurons that are firing after the competition. These details, and how lateral inhibition
between the neurons within a layer is implemented, are described in Section 1.5 of the Supplementary Material. Exactly how
the particular sparseness of the representations that are found in cortical regions [15] are produced may best be investigated in
integrate-and fire networks, and will depend on inhibitory neurons and the excitatory-inhibitory balance [6,69].

We emphasise that each Layer in VisNet and VisNet3 is not a competitive network with a single winner, but has multi-
ple neurons left firing with different firing rates in a sparse distributed representation, for that is how information is encoded
in the cerebral cortex [6,9,15] (see Fig 1b). The activation of the neurons in a Layer is first calculated by the dot product
of the synaptic weights of a neuron and the rates of the neurons in the preceding Layer to which it is connected by the
synaptic weights. Then the activations are converted into rates using a sigmoid or threshold linear activation function, and
the threshold for the activation function is set so that the sparseness across the neurons of the rates becomes a value
specified by a sparseness parameter a that is typically 0.01, where sparseness is defined as

(S yi/n)?
a— 1

2 ¥i/n

)

where n is the number of neurons in the Layer, and y; is the firing rate of the j th neuron in a Layer. Setting the sparseness
in this way implements a form of competition within the network, in that only the neurons with the highest activations have
rates greater than zero after the sparseness has been set as specified. This measure of sparseness is one that is useful

of neurons that is active for any one stimulus.
In VisNet, typically a sigmoid activation function is used

1

y= 1 + e26(r—) (4)
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where r is the activation of the neuron, y is the firing rate produced by the activation function, § is the slope or gain, and a
is the threshold or bias of the activation function, which in VisNet3 reflects the sparseness parameter a. The sigmoid func-
tion bounds the firing rate between 0 and 1. In VisNet3 when we train large versions of the net, we may increase the slope
B to minimize the contribution of low firing rate neurons to what is learned by the synapses in the network. This may help
to increase the number of objects that can be learned in large networks, beyond what might be produced just by decreas-
ing the sparseness.

It is emphasised that a competitive network, which provides the basis for the learning in each layer of VisNet, is a
feedforward unsupervised network [6,9]. An input vector is applied to the neurons in the network, and their activations
are calculated. The neurons with the highest activations for the current input vector of firing rates are selected to be firing
according to the sparseness parameter a that is specified, and a sigmoid activation function is used. That process is
repeated for the set of input firing rate vectors that are to be categorised by the competitive network. There are no recur-
rent collaterals in the network, so that this is not an attractor network. There are no error correcting backprojections or
top-down influences. A competitive network is thus an unsupervised feedforward network, with the simple architecture and
operation described further and illustrated fully elsewhere [6,9].

2.4, Synaptic weight normalisation or scaling in VisNet3

In a competitive network, it is important that all neurons compete on an equal basis, so that different neurons
learn to respond to different inputs, and similar inputs are allocated to the same neuron, so that categorisation is
performed usefully [9]. The usual way in which this is implemented in a competitive net is that after learning with a
Hebbian associative rule or one with a short-term memory trace in the post-synaptic term y such as that in Equa-
tion 1, the length of the vector of synaptic weights on a neuron is set to one [9,55,56]. Given that a Hebbian rule
will always increase synaptic weights if the presynaptic and postsynaptic firing rates are greater than 0, the synap-
tic modification will increase some synaptic weights. The weight normalisation (setting the sum of the squares of
the weights = 1) will then decrease the weights usefully [9,56]. That is what is implemented in VisNet, by dividing
the synaptic weight vector on a neuron by the length of its synaptic weight vector after its synapses have received
an update [48,49].

However, setting the length of the synaptic weight vector on each neuron after every synaptic weight update is not
very biologically plausible. So for VisNet3 we introduce an alternative method of allowing each neuron to compete on an
equal basis by using in VisNet3 a learning rule that allows synaptic weights to decrease in value if they are on a strongly
activated neuron, and the current weight is larger than the presynaptic term. This provides for heterosynaptic long-term
depression, which may be easier to obtain if the synaptic weights are already high [75], in addition to long-term potentia-
tion. The rule we introduce for VisNet3 is

oW = ay (X —w) (5)

This rule was used in different applications previously [56,76,77], and has been termed the ‘standard competitive net
learning rule’ [56]. Here, we compare the operation of VisNet3 using this ‘standard competitive network rule’ shown in
Equation 5, with the weight normalisation used in VisNet [48,49], and with the Oja rule [56,57,78] shown in Equation 6

ow; = ay (Xj—yw)) (6)

which though somewhat similar to what is shown in Equation 5 can normalise the synaptic weight vector and is we sug-
gest less biologically plausible than the rule shown in Equation 5. (The Oja rule may be less biologically plausible as it was
designed to make the vector length of the synaptic weights scale to the same value, and to do that requires a quadratic
use of y as shown above, and the evaluation of that quadratic term may not be biologically plausible.) It will be shown in
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the results that training VisNet3 with Equation 5 produces somewhat better performance than with Equation 6 if non-
binary firing rates are used, and much better than that achieved with the associative learning and weight normalisation
used in previous versions of VisNet. The default learning rule used in VisNet3 is that shown in Equation 5, but using y”
instead of y, and replaces what is shown in Equation 1 that was used in previous versions of VisNet. We note that if the
sigmoid parameter (8 is large, the firing rates will be binary, and with the maximum firing rate of 1 produced by the sigmoid
activation function, then Equation 6 for the Oja rule reduces to Equation 5 for the standard competitive net learning rule.

2.5. Limiting the maximum synaptic weight on a neuron

With normal Hebbian learning using a rule like that shown in Equation 1 (but without a short-term memory trace on the
post-synaptic term y) some synaptic weights might continue to increase to high values, especially if some features are
present in different objects. It seems biologically implausible that synaptic weights could grow without bound, so we
have investigated limiting the maximum value that a synaptic weight on a neuron can reach (set with MAX_WEIGHT
in the Matlab code for VisNet3). (It seems implausible that synaptic weights could grow without bound, in that if we
train for example 10,000 memories into an associative network using an associative Hebbian learning rule, the stron-
gest weight could be 10,000 times the strength of a weak weight, and that range or precision seems implausible. In
fact, when we do the capacity calculations, we find that each synapse in an associative network trained to capacity
would only store about 0.2-0.3 bits of information [6,9,70], so high values and high precision of synapses seem not
only implausible, but also unnecessary [6,9]). We in fact propose that allowing the synaptic weights to saturate at a
maximum value could be beneficial, by encouraging neurons not to rely on a few strong synaptic weights from high-
firing inputs to the neuron, but to grow weights from a number of inputs, in order to increase the sampling of informa-
tion from the preceding layer by producing a more distributed synaptic weight representation for what is learned by
each neuron. We show in the simulations presented in the Results that this can be useful in at least large network ver-
sions of VisNet3. This process is typically combined with other methods to scale the weights on a neuron, such as the
procedure implemented in Equation 5. In practice, the algorithm is to update the synaptic weights during learning for
every view of every object as shown in Equation 5, and at the same time to ensure that the maximum synaptic weight
on a neuron is clipped to the value of MAX_WEIGHTS, typically 0.06 when it is set. Given that the maximum firing rate
y of a neuron is 1.0, and that the maximum presynaptic firing rate X; is 1.0, the maximum that a weight could ever be
according to Equation 5 is 1.0 without any maximum weight clipping, and in small versions of VisNet might reach 0.8
as illustrated in Fig 3b.

2.6. The inputs to VisNet are provided by V1-like neurons produced by Gabor filtering of input images

The inputs to VisNet are computed to have elongated receptive fields of the type found in the primary visual cortex V1,
in order to allow comparison of the neurons in VisNet at different stages to those in the brain. The Gabor filters [79] have
four spatial frequencies, four orientations, and positive or negative as described in the Supplementary Material. The
Layer 1 neurons are connected to these with radii as described above and in Table 1, and with the number of connec-
tions to each frequency scaled according to the spatial frequency, as described in detail elsewhere [9,48,65] and as
shown in Table A in S1 Appendix.

2.7. The capacity of VisNet

Several factors that make a useful contribution to the number of objects that can be recognized by VisNet have been
described above. These factors include the use of sparse distributed representations, and the reuse of intermediate-Layer
neurons as components of different objects represented at the final Layer [48]. But how VisNet would scale up to provide
a model of human visual object representations is a topic of interest. VisNet in quite a small form of 32x32 neurons in each
of 4 Layers, and 200 synapses on to each neuron from the preceding Layer, is small compared to what is found in the
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neocortex. Cortical pyramidal cells often have in the order of 20,000 synapses per neuron, with perhaps 10,000 devoted to
recurrent collateral inputs, perhaps 5,000 synapses to feedforward inputs that could be used for competitive learning, and
perhaps 5,000 to backprojections ending in layer 1 [6,9,64]. The number of neurons in such a cortical module might be in
the order of 100,000 [6,9,64]. Each such module would occupy a region of the cortical mantle with an area of a few mm?.
An important property is that this connectivity is diluted, with the dilution in the order of perhaps 0.1, and that could help with
capacity, as each neuron potentially receives a different combination of the afferents from the preceding cortical area. The
ventral (in fact ventrolateral [37,80]) cortical visual system could have tens to hundreds of such modules [6,9,64].

With these factors in mind, it is difficult to know whether VisNet would scale up sufficiently to account for primate/ human
visual object recognition. To investigate how this architecture may scale up, we describe for VisNet3 a larger network with
256 %256 neurons in each layer, and up to 1,000 synapses per neuron, using up to 800 objects each with up to 9 views from
the Amsterdam Library of Images (ALOI) [81]. Each ALOI image was carefully sized to occupy the full 256x256 image space
and centred before the GABOR filtering, and was used in grayscale. In the capacity simulations that are reported here,
VisNet3 was trained with 9 views of ALOI objects, starting from the beginning of the ALOI object list, and testing different
numbers of objects until the performance measured with the object selectivity measure described next decreased. The
testing was with the same 9 views, so this can be described as within-set transform invariance testing. The testing of how
the number of synapses per neuron influenced the capacity was performed as follows. One set of parameters was chosen
for these investigations, and the only parameter that was changed was the number of synapses per neuron. The parame-
ters selected were those known to produce good performance of the whole network with up to 1000 synapses per neuron,
are shown in Table B in S1 Appendix, and include a sparseness of the firing in each layer of 0.0025, a {3 for the slope of the
activation function of 100, and a value for the maximum synaptic weights of 0.06 for layers 1-3 where this parameter can be
useful. Operation with each value of the number of synapses per neuron being tested was run 10 times with different random
seeds for the network architecture, and the standard deviations of the object selectivity across these 10 simulations were in
the range 0.001-0.005, so were negligible in relation to the object selectivity criterion of 0.6.

The invariant representation of each object after training was measured by an object selectivity measure derived from
the correlation matrices between the firing rates in layer 4 to the set of all views of all objects, illustrated for example in
Fig 2. The object selectivity measure was the sum of the correlations between the firing to the different transforms of
each object, divided by (the sum of the correlations between the firing to the different transforms of each objectfor perfect
representations +the sum of the correlations between the firing for each object to the firing for all transforms of all other
objects). The maximum value for perfect view invariance for each object and no response to any other object is 1.0, and
the minimal value is 0. With each object represented by 9 views, perfect performance would be shown by high correlations
between the 9 different views of any object, and no correlation with any view of any other object, as illustrated in Fig 2a.
Less good performance, with the corresponding object selectivity measures, is illustrated in Fig 2b and 2c.

3. Results
3.1. Learning rules with different weight scaling/normalization

The Matlab small version of VisNet3 with the parameters shown in Table A in S1 Appendix was trained with the three dif-
ferent rules described in section 2.4. Use of the ‘standard competitive net rule’ shown in Equation 5 produced the correla-
tions in Layer 4 between the 9 objects each trained with 9 views shown in Fig 2a, with an object selectivity =0.98. Fig 2b
shows the performance when trained with the Oja rule shown in Equation 6. The performance was a little less good with
an object selectivity=0.78: views of some objects were correlated with some views of other objects. These two synaptic
update rules produced generally comparably good performance in VisNet3. We prefer use of the standard competitive
net rule of Equation 5 in VisNet3 because it is more biologically plausible than the Oja rule shown in Equation 6. Statisti-
cal analyses with new random seeds to construct the networks but the same parameters as used for Fig 2 showed that
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Fig 2. Comparison of learning rules for VisNet3. VisNet3 was trained on 9 objects each with 9 views with the parameters shown in Table Ain S1
Appendix. The correlations shown in all Figures are the correlations between the firing rates of all the neurons calculated as described in the text in the
specified layer of VisNet that are produced by different views of an object. In this case, 9 objects were trained and tested, each with 9 views. (a) shows
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the performance when trained on the ‘standard competitive net rule’ shown in Equation 5. The first 9 transforms are the different views of object 9. The
second 9 transforms are the 9 views of object 2. The 9 views of object 1 are highly correlated with each other, and not with any view of any other object,
etc. The view invariant object representation is thus almost perfect, with an object selectivity =0.98. (b) shows the performance when trained with the Oja
rule shown in Equation 6. The performance was a little less good with an object selectivity=0.78: views of some objects were correlated with some views
of other objects. (c) shows the performance when trained with a Hebbian associative rule like that shown in Equation 1, followed after each synaptic
update with normalization of the length of the synaptic weight vector. The performance was less good with an object selectivity of 0.39.

https://doi.org/10.1371/journal.pcbi.1013959.g002

across 20 runs the mean Object Selectivity for the standard competitive network learning rule of Equation 5 was 0.92
(SD=0.05), for the Oja rule in Equation 6 was 0.77 (SD=0.06), with t=8.87, df=38, p<10-°.

Fig 2c shows the performance when trained with a Hebbian associative rule like that shown in Equation 1, followed
after each synaptic update with normalization of the length of the synaptic weight vector on each neuron. The perfor-
mance was poorer with an object selectivity of 0.39. (Across 20 runs the mean Object Selectivity for the Oja rule in Equa-
tion 6 was 0.77 (SD=0.06), for the weight vector length normalization was 0.44 (SD=0.06), with t=19.6, df=38, p<107.)
A reason for the poorer performance of the synaptic weight normalization used with associative increases of synaptic
weight than the standard competitive net rule (Equation 5) is that the latter specifically decreases strong synaptic weights
if the postsynaptic term y is high, and the presynaptic term X; is low, thereby potentially reducing effects of other stimuli on
that neuron. In contrast, with weight normalization all synaptic weights are scaled down equally after the synaptic update,
so that process builds less selective neurons.

3.2. Clipping the maximum strength of synapses

Fig 3a shows that clipping (limiting or saturating) the synaptic weights to a maximal value during learning can increase the
performance of VisNet3, with an Object selectivity of 0.82 compared to the unclipped condition shown in Fig 3b in which
the Object selectivity was 0.66. The parameters for these simulations are shown in Table A in S1 Appendix.

When operating with associative learning rules such as that shown in Equation 5, some synapses can become quite
strong, close to 1.0 given that the maximum presynaptic rate is 1.0, and the maximum post-synaptic rate is 1.0. Fig 3b
shows that when operating in the standard way, without weight clipping, some of the synaptic weights can reach values of
more than 0.7, and there are relatively few such strong synaptic weights on any one neuron. In that situation, if only one
presynaptic neuron was active for each image being presented, and only one post-synaptic neuron was active, the whole
network would operate somewhat like a look-up table. VisNet ensures that this is not the operating regime, by typically
using sparseness values of 0.01 or larger for the firing rate representations in each layer, to ensure that a number of neu-
rons are active when any one image is being presented, and thus operates in the regime of sparse distributed representa-
tions, somewhat similar to the firing of neurons in inferior temporal visual cortical regions to faces and objects [9,15].

However, when the maximum value of a synaptic weight is clipped during training, to for example 0.1, it is shown in
Fig 3a (lower) that many synaptic weights on each neuron (each neuron’s weights are a column in the Figure) become
almost as large as the maximum weight on a neuron. A result is that each neuron uses more of its synaptic weights to
represent the different inputs to which it can respond. In VisNet3, this helps the whole network to learn how to map the
many different inputs that characterize any one object or feature into the same output neurons, and thereby improves the
performance.

We hypothesize that this synaptic clipping way of enhancing the performance of some neuronal networks, such as
VisNet3, by enhancing a broad distribution of synaptic weights on any one neuron, is different from altering the sparse-
ness of the firing rate representations (Equation 4). A sparse distributed firing rate representation is advantageous for
enabling some generalization to similar stimuli or events, when a similar though not identical set of neurons may be
active, because of the distributed nature of the representation [9,15]. At the same time, the sparse property of the repre-
sentation enables a high storage capacity, in both autoassociation attractor networks [9,70,71] and in pattern association
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Fig 3. Clipping the synaptic weights at a maximum value can increase performance. a. During training, the maximum value of the synaptic weights
in layers 1-3 was clipped at 0.1. Above: the correlation matrix between the 20 objects each trained with 9 views. The Object selectivity was 0.86. Below,
the synaptic weights in Layer 3 of the network, illustrating that many synapses on each neuron could contribute to its activation. In the 32 x 32 neuron
network, the 200 synaptic weights on each of the 1024 neurons are shown as the vector or column of values for each neuron. b. With no clipping. Above,
the Object selectivity was 0.49. Below, relatively few but strong synaptic weights on each neuron may be visible, and these few strong synaptic weights
make a large contribution to the activation of the neurons. The full set of parameters used are provided in Table Ain S1 Appendix.

https://doi.org/10.1371/journal.pcbi.1013959.g003

networks [9,72]. But having separate control over the distributed nature of synaptic strengths on a neuron could enable
different input firings produced by for example different views of an object to become associated onto the same neuron.
In other words, weight clipping or saturation can enable neurons to learn about two completely different input patterns.
This applies naturally in a network with the trace rule for invariant representations, for the trace of previous neuronal
activity could enable a neuron to learn about two orthogonal input patterns of neuronal activity, as seen for example on
recent but not the current view of an object. Another situation in which this could be useful in when there is a teacher
forcing each neuron to respond, as in a pattern association network, in which two orthogonal input patterns could be
learned onto the same output neuron [9,72].
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We note that in practice, the use of clipping the synaptic weights at a maximum value is especially useful in a heavily
loaded network.

Overall, we propose here that synaptic weight clipping is an interesting principle of cortical computation that can have
advantages in some neuronal networks, and for example in VisNet3 can increase the number of objects that can be
learned with transform-invariant representations.

3.3. Performance of a scaled up version of VisNet3

VisNet3 was scaled up to 256 x 256 neurons in each layer, and up to 1000 synapses per neuron, to investigate how its
performance scales up, and what factors influence the capacity. (There are up to 262,144,000 synapses in this 4-layer
network.) The training stimuli used were up to 800 objects each with 9 views spaced 40° apart from the ALOI dataset [81].
(The value of 40° apart was used because of prior work that had shown that VisNet performs well when trained with object
views separated by about this amount [45,49]. Moreover, such a set of views shows all the visual features present in most
objects.) The key parameters used for the training are shown in Table B in S1 Appendix.

Fig 4a shows the correlation matrix between objects when trained on 100 objects for which the object selectivity was
0.85, and in Fig 4b when trained on 800 objects for which the object selectivity was 0.50.

The key parameters shown in Table B in S1 Appendix enabling this good performance were as follows. The large num-
ber of synapses per neuron were especially important, as shown by systematic experiments in which these were altered
with results described in section 3.5. So was the sparseness of the representation (Table B in S1 Appendix), with more
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Fig 4. Performance of a larger version of VisNet3 with 256*256 neurons in each layer, and up to 1000 synapses per neuron. (a) Performance
when trained on 100 Amsterdam Library of Images objects each with 9 views, for which the Object Selectivity was 0.85 with 1000 synapses per neuron
and MaxWeight=0.06 for Layers 1-3. (b) Performance when trained on 800 ALOI objects each with 9 views, for which the Object Selectivity was 0.50.
For (b), the correlations for just the first 100 of the 800 objects are illustrated, for readability, and the Object Selectivity was measured for these 100
objects, as some of the ALOI objects later in the series are more confusable, and to allow direct comparison with the object selectivity in (a) in which 100
objects were trained. For almost all objects, along the diagonal there is a small block of 9x9 correlations for the different views of each object, with cor-
relations off the diagonal for only a few objects that were somewhat similar in form and confusable. There were 9 transforms of each object. The training
parameters are shown in Table B in S1 Appendix.
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sparse values being useful when a large net was heavily loaded with objects. Although some of these values seem quite
sparse (e.g., 0.0025), we note that in a cortical module of 260,000 neurons, this would mean that the firing of 640 neurons
was contributing to the learning at any one time. Moreover, what is stored in the synaptic weights may reflect only the
neurons with higher firing rates, given the voltage-dependent non-linearity of NMDA receptors, so the sparseness of the
representation that is learned may be lower (more sparse) than that indicated by the whole firing rate distribution [6,9,15].

The use of the ‘standard competitive net learning rule’ shown in Equation 5 produced much better performance than
weight normalisation after Hebbian associative learning, for the reason described above. All the results presented in this
section were with this ‘standard competitive net learning rule’ shown in Equation 5. The use of MAX_WEIGHTS was also
important in obtaining good performance.

The fact that performance of a competitive network becomes poorer with increased requirements for the number of
categories to be produced is not surprising, with one limit being set by the number of output neurons and the sparseness
of that output representation (with a lower value for the sparseness increasing capacity up to a limit set by the number
of output neurons); and the number of input synapses and the sparseness of the inputs also being a factor that helps to
determine how well training firing rate vectors for the inputs can be separated, as considered elsewhere [6,9].

3.4. An activation function that minimizes low firing rates in a neuronal network, and that may thereby enhance
learning; and the effects of the sparseness of the representation

The activation function typically used in VisNet is a sigmoid activation function (Equation 4), as set out in section 2.3. In
the large networks investigated in section 3.5, it was found that increasing the slope of the activation function 8 in Equa-
tion 4 from the default value of 10 to 100 or more can improve the performance of VisNet3. For example, in Fig 4a,
was set to a high value of 1,000 to emulate a binary activation function, and the object selectivity was 0.85, but with  set
to the default value of 10 to emulate the graded firing rate representations found in the cerebral cortex, the object selectiv-
ity at 0.62 was lower. The effect of this is to reduce the number of neurons in a layer with low firing rates, as instead they
are set to 0. This effectively means that during learning, neurons with what would have been low firing rates are excluded
from any synaptic increases, because of their zero rates. This may be a way of reducing some interference between
objects that are being learned. As noted in section 2.3, this may be conceptualised as setting some threshold in VisNet3
on whether a neuron shows synaptic plasticity. A different way to alter which neurons are involved in learning is to set the
sparseness of the representation in a layer, set in VisNet3 by the parameter a.

We note that in the brain, and in an integrate-and-fire network, what is actually learned by neurons may be set by the
voltage-dependent threshold for synaptic modification implemented by the properties of the NMDA receptor, as shown in
Eqgn B.35 of Rolls [9]. In more detail, the NMDA receptors that are involved in synaptic modification are only likely to be
strongly activated at moderate to high firing rates of neurons [82]. This will result in the population of neurons that learn
being somewhat more sparse than is measured by the full firing rate distribution of neurons within a brain region [6,9], and
this may be an important factor in increasing the capacity of a network beyond what is calculated from the sparseness of
the full firing rate distribution. In VisNet3 this could be implemented by reducing the sparseness of the firing rate represen-
tation in a layer.

3.5. Capacity estimates for VisNet3

Fig 5 shows how the number of objects that can be learned with invariant representations over 9 views spaced 40 deg
apart varies with the number of synapses per neuron, and for 2 sizes of VisNet3, with 32 %32 neurons in each of 4 layers,
and with 256 x 256 neurons in each layer. The parameters such as sparseness and MAX_WEIGHTS were optimized for
each data point for Layers 2 and 3 of VisNet3 as shown in Tables A and B in S1 Appendix with it being advantageous to
decrease the sparseness as the number of synapses per neuron was increased. The value of MAX_WEIGHTS for these
simulations was [0.06, 0.06, 0.06, 1]. Fig 5 provides evidence that the capacity increases with the number of synapses
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onto each neuron, with the maximum that could be tested=1,000, compared to the number of synapses on each neuron
in higher visual cortical regions in the order of 10,000 [9,49]. The capacity may also increase with the number of neurons
in the network, with the maximum that was tested=65,536. This compares to a number of pyramidal cells in a small region
of neocortex within 2 mm of approximately 260,000 (if a neuronal density of 30,000/mm? is assumed [9]).

4. Discussion

Several key advances have been made in the research described here in increasing the biological plausibility of bio-
logically plausible networks for invariant object and face recognition in the primate including human ventrolateral visual
cortical pathway leading from V1 to V2 to V4 to posterior inferior temporal visual cortex to anterior inferior temporal visual
cortex.

One key advance is use of the synaptic learning rule shown in Equation 5 which can be termed the ‘standard competi-
tive net rule’. Before this, in VisNet [9,48,49], simple Hebbian associative increases in synaptic weight like those shown in
Equation 1 based on how high the presynaptic and post-synaptic firing rates are, followed by normalization of the length of
the synaptic weight vector on each neuron, was used, following an early model of competitive learning [55]. That synaptic
weight normalization involved is not very biologically plausible. In contrast, the ‘standard competitive net rule’ shown in
Equation 5 does not need any explicit synaptic weight normalization on each neuron, for a synaptic weight can decrease
in strength if the neuron is strongly activated as shown by y, and if the existing synaptic weight strength is higher than the
presynaptic firing rate X;. This is a form of heterosynaptic long-term depression, in which synapses with low presynaptic
firing decrease in strength onto a postsynaptic neuron with high activity, which can be advantageous in a number of ways
in neuronal networks [6,9]. In the present context, an advantage is that this can reduce the synaptic weight of inputs to a
neuron that are not involved in activating the neuron, with the result that later that neuron will not be activated for inputs
that may be from other objects. That is part of the mechanism for increasing the selectivity of each neuron in the network
to only one or a few objects, and thereby reducing interference from other objects during later recognition. In contrast,
synaptic weight normalization does not increase the selectivity of a neuron to some inputs, but merely scales down all the
synaptic weights in the same proportion.
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An advantage of the ‘standard competitive net rule’ shown in Equation 5 is evident in VisNet3 as illustrated in Fig
2, which shows much better object selectivity for this rule (Fig 2a) than for Hebbian learning with weight normalization
(Fig 2c). The Oja rule [57] shown in Equation 6 performs in VisNet3 almost as well as the ‘standard competitive net rule’
(Equation 5), as also borne out in the large version of VisNet3 (see for example Fig 4). The somewhat less good perfor-
mance of the Oja rule may be because for low postsynaptic rates y, any corrective decrease of a high synaptic weight
w; will be less than for the standard competitive net rule in Equation 5, because the amount of decrease of the synaptic
weight for the Oja rule is scaled by the low value of the rate y in Equation 6.

The ‘standard competitive net rule’ shown in Equation 5 has biological plausibility in that in experiments, heterosyn-
aptic LTD may be easier to obtain after the synapses have been potentiated [75]. However, an implication of the present
research is that new research would be very useful on whether what is shown in Equation 5 is found in the neocortex,
given the potential computational importance of this type of synaptic weight-dependent heterosynaptic long-term depres-
sion for understanding neocortical function [6]. It is noted that this learning rule has been described before [56,76,77],
but here we show how useful it is in this hierarchical model VisNet3 of the operation of the ventral visual cortical stream
for object recognition. As far as we know, this is the first demonstration in a hierarchical model of cortical invariant visual
object recognition that this standard competitive network learning rule (Equation 5) performs better than the classical
associative learning rule (Equation 1) followed by synaptic vector length normalization [55]. We emphasize that it would be
very useful to explore how its two key aspects, heterosynaptic long-term depression, and LTD that depends on the magni-
tude of the synaptic weight, is implemented in the cerebral cortex. A different rule was proposed that attempts to regulate
the synaptic weights homeostatically using a time-averaged value for the post-synaptic firing [83], but it is not useful in the
current context as it forces all neurons to learn for given inputs, which is not desirable in competitive nets, where some
neurons should remain unallocated for future input patterns. The standard competitive network learning rule of Equation
5 may be helpful not only in many parts of the cerebral neocortex where new representations need to be learned [6,9,37],
but also in parts of the hippocampal system such as the dentate gyrus and CA1 where new representations need to be
formed [84,85].

A second advance in understanding biologically plausible neuronal networks for invariant visual object recognition
is that limiting the maximum strength of synapses may not only be biologically plausible, but may have computational
advantages. When used in the large version of VisNet3 described here, this could improve performance, by we propose
facilitating the use of many inputs to a neuron from the preceding layer of the network, which makes it into a more distrib-
uted computational system and less of a look-up table based on a few very strong synapses, with potential computational
advantages for generalization, for example to interpolated images. In particular, we propose in section 3.2 that weight
clipping or saturation can enable neurons to learn about two completely different input patterns. This applies naturally
in a network with the trace rule for invariant representations, for the trace of previous neuronal activity could enable a
neuron to learn about two orthogonal input patterns of neuronal activity, as seen for example in recent views but not the
current view of an object. Another situation in which this could be useful is when there is a teacher forcing each neuron
to respond, as in a pattern association network, in which two orthogonal input patterns could be learned onto the same
output neuron [6,9,72]. We note that in practice, the use of clipping the synaptic weights at a maximum value is especially
useful in a heavily loaded network.

To consider this further, there is evidence that some cortical neurons may have a lognormal distribution of synaptic
weights [86,87], which implies that neurons have some large weights that may dominate the responses of the neurons.
We therefore examined the synaptic weight distribution of neurons in VisNet3 that had learned during the training of
invariant object representations. We found that in Layers 2—4 of VisNet3 these trained neurons had synaptic weight dis-
tributions that were fitted well by a lognormal distribution. This was found for the usual case with no clipping of synaptic
weights, and with clipping using MAX_WEIGHTS=0.3, in simulations with the parameters as in Fig 2. The difference of
the synaptic weight distributions is in the few weights larger than the value of MAX_WEIGHTS, which are limited to 0.3 if
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MAX_WEIGHTS =0.3. Without MAX_WEIGHTS being set, the responses of a neuron may be dominated by these rela-
tively few large weights. The implication of having MAX_WEIGHTS set, is that when many objects are represented, the
number of synaptic weights used to represent the many different objects can be larger, because a neuron’s response is
not dominated by just a few large synaptic weights, which might work for one or a few objects, but not for a large number
of objects. In this way, setting the maximum value of synaptic weights may produce some benefits that are not just related
to the sparseness of the neuronal representation.

Overall, we propose here that synaptic weight saturation or clipping at a maximum value is an interesting principle of
cortical computation that can have advantages in some neuronal networks, and for example in VisNet3 can increase the
number of objects that can be learned with invariant representations.

A third advance is in testing VisNet3 with large numbers of training images, to investigate how it scales up, which is
important for understanding the biological plausibility of this approach. This helped to show how the numbers of synapses
per neuron, and the numbers of neurons in each layer of the network, are related to how many objects can be correctly
categorized by the network (Fig 5). Of course, use of the ‘standard competitive net rule’ shown in Equation 5 is also
important in increasing the storage capacity of the network, relative to the use of weight normalization. The implication
of what is shown in Fig 5 is that if VisNet3 were scaled up to be in the order of a 2x2mm cortical area, that hundreds of
objects could be stored with invariant representations in a module of cortex such as this. (The thinking here is based on
a number of synapses on each neuron in higher visual cortical regions in the order of 10,000 [6,9,49], and a number of
pyramidal cells in a small region of neocortex within 2 mm of approximately 260,000 (if a neuronal density of 30,000/mm3
is assumed [6,9]).

The changes to VisNet introduced in VisNet3, make it even more biologically plausible. One of the changes is the new
competitive net learning rule implementing heterosynaptic long-term depression that depends on the magnitude of the
synaptic weight (Equation 5) to bypass the need for artificial synaptic weight normalization on every neuron to enable
equal competition between neurons, and is one improvement. A second improvement is showing that clipping or allowing
to saturate synaptic weights at a maximum value, which is highly biological plausible, can actually improve performance
particularly in large networks by facilitating more distributed synaptic weight vectors on each neuron.

Although VisNet3 was investigated here for building representations with invariance over views of objects, Vis-

Net can learn in principle any transform of objects, and has been shown to implement translation (shift) invariance,

size invariance, lighting invariance, deformation invariance, and even combinations of translation and view invariance
slow learning that links together the representations across its layers of features and then whole objects, as they trans-
form across a short time period when viewed in the natural world. VisNet3 investigates shape recognition, and therefore
does not used color in its training images. However, when color is added to a network such as VisNet, it will greatly
improve performance, because colored patches are a further level of description that can be used to distinguish between
objects, and could easily be learned by for example having the Gabor filters available in different colors.

VisNet is a generic model of how a feature hierarchy approach combined with a slow learning (trace short-term mem-
ory) rule can learn to represent objects, but the ‘objects’ could be of many types, including faces; body parts; objects such
as toys, cars, and tools; and even words. Indeed and quite remarkably, a mechanism has been proposed for how letters
are combined in what is effectively a feature hierarchy network to gradually build up whole words [93-96]. What does
happen is that these types of representation are frequently somewhat segregated into different cortical regions or patches,

maps form in cortical networks with recurrent collateral associatively modifiable connections and lateral inhibition, which
have the great advantage of minimizing cortical connection distances and thereby brain size [6,9]. However, even more
interestingly than that, other cortical regions are recruited by visual stimuli such as faces, scenes, body parts, and tools,
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based on their semantics, with for example stationary tools activating visual motion regions such as FST in humans [38].
In each of these systems/patches, networks with generic properties similar to VisNet may be operating, but the effects of
brain damage will depend on exactly which patches are damaged with the different types of stimulus material that each
processes [6,9].

An advantage of a network like VisNet that has four layers that correspond approximately to V2, V4, posterior
inferior temporal cortex, and anterior inferior temporal cortex and that learns with local learning rules is that the
neurons in its four layers can be compared with neurons recorded in the brain. Simple properties such as the gradual
increase of receptive field size up through the network are evident in VisNet in a similar way to those in the brain.
And the tuning of neurons in layer 4 of VisNet to a set of stimuli can be similar to that of neurons in the anterior
inferior temporal visual cortex [6,9]. In addition, it has been shown how the receptive fields of neurons in Layer 1 are
formed by combinations of the inputs received from the input Gabor filters that correspond to V1 [6,9,41]. But much
more could be done in layers 2 and 3 of VisNet to understand how features from earlier layers are combined to help
solve object recognition.

Given that VisNet3 is even more biologically plausible given the research described here, we may compare it with
approaches that depend on deep learning with non-local synaptic modification rules that are being used as models of
how visual object recognition may be implemented in the primate including human brain [61-63]. These models include
hierarchical convolutional deep neural networks (HCNN) [61,63], which involve non-biologically plausible operations
such as error backpropagation learning, and copying what has been set up in one part of a Layer to all other parts of
the same Layer, which is also a non-local operation [9,59,60,104]. The deep learning and convolution neural network
approaches are superficially attractive [62], for the responses of neurons in these artificial networks have similarities
with the responses of neurons recorded in the primate visual cortical pathways to the inferior temporal visual cortex. But
while these similarities are computationally interesting, it is not surprising if artificial neural networks as powerful as deep
learning and convolution can be set up to produce these similarities, which do not show that the algorithms used in these
artificial network approaches are how the brain implements invariant visual object representation [6].

Key issues for these artificial neural network approaches [62] include the following. One is that the learning rule is
not local to the synapses, involving only the presynaptic and the post-synaptic firing rates, but depends on errors artifi-
cially computed by for example backpropagation of errors to train the synaptic weights in the hierarchical convolutional
deep neural networks (HCNN) [61-63]. Attempts to overcome some of these issues involve for example predictive
networks [105], but here too special mechanisms need to be invoked to compute errors locally. Hierarchical convolu-
tional deep neural networks also involve non-biologically plausible operations such as error backpropagation learning,
and copying what has been set up in one part of a Layer to all other parts of the same Layer, which is also a non-local

A second issue it that typically (though not always [106]) a teacher for each output neuron is needed, and nothing like
this is evident in the visual cortical regions.

A third issue is lateral propagation of synaptic weights in deep convolution networks [61-63] which is not biologically
plausible.

A fourth issue is that with the powerful training of artificial deep networks, the system can become fragile, with alteration
of even a few pixels in an image altering the performance of the artificial network, whereas this typically [62] has almost
no effect on object recognition in humans, and it would be interesting to test whether VisNet operates more like humans in
this respect.

Afifth issue is that the artificial network approaches do not train in a biologically plausible way in that they use just
large training sets of images for which categories are typically specified, whereas VisNet capitalizes on the statistics of
how images transform in the natural world, and uses these statistics that tend to be produced by the same object over a
few seconds as a key part of the training of transform invariant representations of objects, using the trace learning rule
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[49]. This may be a key point, and may contribute to why these deep HCNNs do not perform in the way that humans do,
because the training is so different.

A sixth issue is that VisNet provides utility for the local recurrent collateral synaptic connections within a cortical region
that have the potential to support attractor networks [6,9] which are likely to be important in maintaining neuronal activ-
ity for periods of a few seconds while an object is being viewed with its different transforms to help implement trace rule
learning, whereas local attractor dynamics do not have a key role in most artificial network approaches to visual object
recognition [62].

A seventh issue is that the cerebral cortex is able to perform its computations for invariances in networks with just 4 or
5 Layers (see Fig 1). Part of the reason for this is to maximize processing speed, and minimize computation and reaction
time [9,64], but it does show that networks with one hundred or more Layers as in some artificial neural networks are not
needed to solve the computations involved in transform-invariant object recognition.

An eighth issue is that after an artificial neural network has been trained with error backpropagation and obtains good
performance on the training set, if a few more stimuli need to be learned, this can degrade the performance of the network
on the already trained images, and there is then a delay until good performance can be achieved again after much more
training [107]. This undesirable property does not occur when real human brain networks learn new objects or faces.

A ninth issue is that deep learning models do not fit the psychology of human vision well, partly because the deep
learning models typically make predictions about percent success on a database, but do not test particular hypotheses
about how the human visual system operates [108]. Many problems arise in the way that deep neural networks process
images that are unlike human performance, including that they often classify images based on texture rather than shape;
that they classify images based on local rather than global shape; and that they ignore the relations between parts when
classifying images [108].

We note that of these 9 issues, VisNet does not have the problems with Al systems in terms of biological plausibility
described for issues 1, 2, 3, 5, 6, and probably 7. It will be of interest to see whether in future Al approaches can be developed
that seem to be more biologically plausible and therefore to help more directly to elucidate how the brain computes [6,9].

Nor do these artificial network approaches [62] address important issues about how the brain works to solve these
computationally demanding tasks, issues such as how synaptic weights are kept bounded in the real brain to be approxi-
mately equal on each neuron, nor the computational utility demonstrated here of having the synaptic weights on neurons
limited to a biologically plausible maximum value. Other key properties of the VisNet3 model of biologically plausible
invariant object recognition described here that may not be incorporated in Al models include the use of sparse connec-
tions from layer to layer (which helps each neuron to build different and stable representations); sparse representations
(which help with storage capacity); and large numbers of synapses on each neuron which are important in the capacity
of the system, as is the large number of neurons in potentially specialized different cortical modules for different types of
stimulus such as faces, objects, etc. Another key property of the network described here is that it utilizes only 4 layers or
stages of processing after V1 to model the real cortical organization where a few layers or stages of hierarchical process-
ing (Fig 1) ensures that the whole network can respond rapidly. Thus by investigating a biologically plausible network of
invariant visual object recognition such as VisNet3, key issues are opened up about how invariant visual object recogni-
tion is actually implemented in the primate including human ventral visual system.

What is described here and elsewhere for VisNet [6,9,48,49] may thus it is hoped be useful for developing better arti-
ficial neural networks and artificial intelligence. For example, convolutional neural networks are typically trained on very
large numbers of single training image exemplars (snapshots) of the classes to be learned, and can fail if a few pixels in
the image are altered, implying that they learn pixel-level representations. It is proposed here that training such networks
with different transforms of objects would much better enable transform-invariant shape-based representations to be
learned, leading to much more powerful performance. Potential limitations of current deep learning methods have also
been noted by others [107,109,110], and are developed further [6].
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Overall what is described here are key advances in understanding how biologically plausible networks operate to perform
massive computational tasks in the cerebral cortex. One key advance is the use of a synaptic modification rule that has long-
term potentiation complemented by heterosynaptic long-term depression that depends on the strength of the synapse. This
has not been tested previously in a multilayer model of invariant visual object recognition in the ventral visual cortical stream of
primates including humans, and removes the need for biologically implausible synaptic weight normalization on each neuron.
An implication is that much more experimental research on this type of synaptic modification in the cerebral cortex is indicated.
A second advance is that implementing a very biologically plausible upper limit to the strength of synapses can greatly help
computationally in at least networks of the type described to improve performance by promoting more distributed sets of syn-
aptic weights on each neuron. This has not been investigated previously before in any model of invariant visual object recog-
nition as far as we know. A third advance is that limiting the contribution of low firing rate neurons to synaptic modification can
improve performance. A fourth advance is that we show that with these enhancements, this biologically plausible architecture
scales up well for the massive computational task of invariant visual object and face recognition. A fifth contribution is that we
raise the issue of the usefulness of biologically plausible approaches to cortical computation such as that described here for
invariant visual object and face recognition compared with the usefulness of artificial networks trained by deep learning using
error backpropagation perhaps with convolution. The issue arises of how appropriate and useful these artificial neural network
approaches are to understanding cortical function, if they use algorithms that are different from those implemented in the brain.
This is an extremely timely issue to raise now for discussion, given that it is of course possible to train deep networks with back-
propagation of error (rather than a biologically plausible local synaptic learning rule) to emulate some aspects of brain function,
but perhaps using completely different algorithms to those used by the brain.

Supporting information

S1 Appendix. Fig A. Convergence in the visual system. Right — as it occurs in the brain. V1, visual cortex area V1; TEO,
posterior inferior temporal cortex; TE, anterior inferior temporal cortex (IT). Left— as implemented in VisNet. Convergence
through the network is designed to provide fourth layer neurons with information from across the entire input retina. Fig
B. Lateral inhibition filter, which was implemented by a Difference of Gaussians filter (see text). Fig C: The filter sampling
paradigm. Here each square represents the retinal image presented to the network after being filtered by a Gabor filter
of the appropriate orientation sign and frequency. The circles represent the consistent retinotopic coordinates used to
provide input to a layer 1 cell. The filters double in spatial frequency towards the reader. Left to right the orientation tuning
increases from 0° in steps of 45°, with segregated pairs of positive (P) and negative (N) filter responses.

(PDF)

S1 Code. VisNetMat3code.
(ZIP)
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